Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s
Actually what the problem meant about the westward
component of the ball’s displacement is the horizontal component of the
displacement. To help us better understand the problem, I attached a figure of
the situation.
We can see from the figure that to solve for the value of
the horizontal component, we have to make use of the sin function. That is:
sin θ = side opposite to the angle / hypotenuse of the
triangle
sin 42 = x / 40 m
x = (40 m) sin 42
x = 26.77 m
Therefore the ball has a westward
displacement of about 26.77 m
A. A healthy body composition will improve range of motion and prevent injuries. Staying in a healthy weight range (BMI) prevents overexerting joints. It also helps increase range of motion which in turn reduces injury.
Answer:
I want to say your answer is D) Electric
Explanation: Epicenter is the part of the earth's surface directly above the focus of an earthquake.
I hope this helps you.