Answer:
3.0883 x 10^10mg
Explanation:
1 kilogram = 1000 000 milligrams
So, 30 883 x 1000 000 = 30 883 000 000mg
First convert 5.5 cm to meters.
(5.5 cm / 1) x (m / 100 cm) = 0.055 m
A typical atom is about 1.0E-10 m in diameter; thus:
0.055 m / 1.0E-10 m = 5.5E8 atoms or 550,000,000 end-to-end atoms in 5.5 cm
Answer:
The final position made with the vertical is 2.77 m.
Explanation:
Given;
initial velocity of the ball, V = 17 m/s
angle of projection, θ = 30⁰
time of motion, t = 1.3 s
The vertical component of the velocity is calculated as;
The final position made with the vertical (Yf) after 1.3 seconds is calculated as;
Therefore, the final position made with the vertical is 2.77 m.
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
Answer:
W = 1418.9 J = 1.418 KJ
Explanation:
In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:
W = F.d
W = Fd Cosθ
where,
W = Work Done = ?
F = Force = 151 N
d = distance covered = 10 m
θ = Angle with horizontal = 20°
Therefore,
W = (151 N)(10 m) Cos 20°
<u>W = 1418.9 J = 1.418 KJ</u>