Answer: Q=1/2p+15,= p=2q-30= Slope = 1.000/2.000 = 0.500
p-intercept = -30/1 = -30.00000
q-intercept = 30/2 = 15
Step-by-step explanation: Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
p-(2*q-30)=0
Solve p-2q+30 = 0
we have an equation of a straight line. Such an equation is usually written y=mx+b ("y=mx+c" in the UK).
"y=mx+b" is the formula of a straight line drawn on Cartesian coordinate system in which "y" is the vertical axis and "x" the horizontal axis.
In this formula :
y tells us how far up the line goes
x tells us how far along
m is the Slope or Gradient i.e. how steep the line is
b is the Y-intercept i.e. where the line crosses the Y axis
The X and Y intercepts and the Slope are called the line properties. We shall now graph the line p-2q+30 = 0 and calculate its properties
Notice that when p = 0 the value of q is 15/1 so this line "cuts" the q axis at q=15.00000
q-intercept = 30/2 = 15
When q = 0 the value of p is -30/1 Our line therefore "cuts" the p axis at p=-30.00000
p-intercept = -30/1 = -30.00000
Slope is defined as the change in q divided by the change in p. We note that for p=0, the value of q is 15.000 and for p=2.000, the value of q is 16.000. So, for a change of 2.000 in p (The change in p is sometimes referred to as "RUN") we get a change of 16.000 - 15.000 = 1.000 in q. (The change in q is sometimes referred to as "RISE" and the Slope is m = RISE / RUN)
Slope = 1.000/2.000 = 0.500
a) (2a - b)² = (4a² - 4ab + b²)
b) (10m - n²)² = (100m² - 20mn² + n⁴)
c) (4x - 4²) = (16x² - 8x + 4⁴)
d)
e)

f)

<u>Answer:</u>
The correct answer option is B. 2 = 3x + 10x^2
<u>Step-by-step explanation:</u>
We are to determine whether which of the given equations in the answer options can be solved using the following expression:

Here,
and
.
These requirements are fulfilled by the equation 4 which is:

Rearranging it to get:

Substituting these values of
in the quadratic formula:


The answer should be 2 but i really don't know so its 2
\
Answer:
1096 more water
Step-by-step explanation:
Let;
x = the water used in general
but used 3 times of the original = 3x
3*(548) = 1644 water a day
How much more water =New - original
where:
new = 1644
original= 548
1644 - 548
=1096 more water