Complete question is;
An experiment is carried out to measure the extension of a rubber band for different loads.
The results are shown in the image attached.
What figure is missing from the table?
Answer:
17.3 cm
Explanation:
The image attached showed values for load, extension and initial length.
Now, the first length there is 15.2 cm and as such it's corresponding extension is 0 because it has no preceding measured length.
The second measured length is 16.2 cm. Since it's initial measured length is 15.2 cm, then the extension has a formula; final length - initial length.
This gives: 16.2 - 15.2 = 1 cm
This corresponds to what is given in the table.
For the next measured length, it is blank but we are given the extension to be 2.1 cm. Now, since the initial measured length is 15.2 cm.
Thus;
2.1 cm = Final length - 15.2 cm
Final length = 15.2 + 2.1
Final length = 17.3 cm
Answer:
Part a)

Part b)
Direction = upwards
Explanation:
When ball is dropped from height h = 4.0 m
then the speed of the ball just before it will strike the ground is given as



Now ball will rebound to height h = 2.00 m
so the velocity of ball just after it will rebound is given as



Part a)
Average acceleration is given as



Part B)
As we know that ball rebounds upwards after collision while before collision it is moving downwards
So the direction of the acceleration is vertically upwards
If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be <em><u>a group</u></em> of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it.
This may helpv^2=u^2+2as. v=0 at top of flight. a=acceleration of gravity(vo^2)/2a=s.