Answer:
609547.12 Pa ≈ 6.10×10^5 Pa
Explanation:
Step 1:
Data obtained from the question. This include the following:
Force (F) = 49.8 N
Radius (r) = 0.00510 m
Pressure (P) =..?
Step 2:
Determination of the area of the head of the nail.
The head of a nail is circular in nature. Therefore, the area is given by:
Area (A) = πr²
With the above formula we can obtain the area as follow:
Radius (r) = 0.00510 m
Area (A) =?
A = πr²
A = π x (0.00510)²
A = 8.17×10^-5 m²
Therefore the area of the head of the nail is 8.17×10^-5 m²
Step 3:
Determination of the pressure exerted by the hammer.
This is illustrated below:
Force (F) = 49.8 N
Area (A) = 8.17×10^-5 m²
Pressure (P) =..?
Pressure (P) = Force (F) /Area (A)
P = F/A
P = 49.8/8.17×10^-5
P = 609547.12 N/m²
Now, we shall convert 609547.12 N/m² to Pa.
1 N/m² = 1 Pa
Therefore, 609547.12 N/m² = 609547.12 Pa.
Therefore, the pressure exerted by the hammer on the nail is 609547.12 Pa or 6.10×10^5 Pa
I think it may be c i learned about this last year
Answer:
They developed during the Cambrian time period, which was around 530 million years ago.
Explanation:
Hope this Helps!
Answer: 17.83 AU
Explanation:
According to Kepler’s Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”. </em>
(1)
Talking in general, this law states a relation between the <u>orbital period</u>
of a body (moon, planet, satellite, comet) orbiting a greater body in space with the <u>size</u>
of its orbit.
However, if
is measured in <u>years</u>, and
is measured in <u>astronomical units</u> (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
This means that now both sides of the equation are equal.
Knowing
and isolating
from (2):
(3)
(4)
Finally:
(5)
Answer:
(A) Consists of a small number of tiny particles that are far apart- relative in their size.
Explanation:
An <em>ideal gas</em> is defined as a simplification of a real gas, with punctual particles, in which all collisions are elastic, with random displacements and with no attractive force between them.
The assumption of the particles being punctual make clear that they do not have size at all. So if they were far apart-relative in their size, they can not collide each other, that is why assumption (B) can not be possible (<u><em>for that particular case</em></u>).
It is clear that (A) is not an assumption for an ideal gas, because do not fit in any of its properties.
Elastic collision: It is a case in which the energy is conserved (Kinetic Energy).
Kinetic Energy: It is the energy that will have an object as a consequence of its movement.