Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
Answer:
a) v_average = 11 m / s, b) t = 0.0627 s
, c) F = 7.37 10⁵ N
, d) F / W = 35.8
Explanation:
a) truck speed can be found with kinematics
v² = v₀² - 2 a x
The fine speed zeroes them
a = v₀² / 2x
a = 22²/2 0.69
a = 350.72 m / s²
The average speed is
v_average = (v + v₀) / 2
v_average = (22 + 0) / 2
v_average = 11 m / s
b) The average time
v = v₀ - a t
t = v₀ / a
t = 22 / 350.72
t = 0.0627 s
c) The force can be found with Newton's second law
F = m a
F = 2100 350.72
F = 7.37 10⁵ N
.d) the ratio of this force to weight
F / W = 7.37 10⁵ / (2100 9.8)
F / W = 35.8
.e) Several approaches will be made:
- the resistance of air and tires is neglected
- It is despised that the force is not constant in time
- Depreciation of materials deformation during the crash
Use Factor-Label Method:
8miles 63360 inches
---------- X --------------------- X
1 1 mile
2.54cm 1 meter
X ------------ X ---------------- X
1 inch 100 cm
1 km
----------------- = 12.87 km
1000meters
8 miles = 12.87 km
Answer:
a) 8 seconds if you are using earth's gravity.
b) 48m if the velocity does not change
c) 9.8m/s
Explanation:
Answer:
Explanation:
Horizontal displacement
x = 120 t
Vertical position
y = 3610 - 4.9 t²
y = 0 for the ground
0 = 3610 - 4.9 t²
t = 27.14 s
This is the time it will take to reach the ground .
During this period , horizontal displacement
x = 120 x 27.14 m
= 3256.8 m
So packet should be released 3256.8 m before the target.