Answer:
From the data we know that runner A and runner B are 11 km apart from the start because (6+5) km
So the runner from the east direction has distance as unknown km, rate= 9 k/h ; time= d/r=x/9 hr
So runner towards the west will be
distance = 11-x, rate= 8 k/h, time = d/r = (11-x)/8
So equating east and west time we have
x/9= (11-x)/8
8x=99-9x
17x=99
x=5.92 km
That is the distance covered by runner towards the east and he will meet the runner toward the west at
6-5.92=0.08 km west of the flagpole.
Explanation:
If an object has a moment of inertia I₀ about an axis, then the moment of inertia about a different, parallel axis is I = I₀ + md², where d is the distance between the axes.
For example, consider a horizontal thin rod rotating about a vertical axis passing through its center. It has mass m and length L. Its moment of inertia is known to be I = 1/12 mL².
Now consider the same rod, but this time we move the axis of rotation L/2 to the end of the rod. We can use parallel axis theorem to find the new moment of inertia:
I = I₀ + md²
I = 1/12 mL² + m (L/2)²
I = 1/12 mL² + 1/4 mL²
I = 1/3 mL²
The BRUSH <span>In electric motors and electric generators is responsible for transferring current from the power source to the commutator or from the slip rings to where the electricity is needed</span>
Mass and velocity of course