I took physics last year. I’m not the best but I have some idea.
answer: 340 m/s
explanation: in this instance, the sound wave travels 340 meters in 1 second, so the speed of the wave is 340 m/s. remember, when there is a reflection, the wave doubles its distance. in other words, the distance traveled by the sound wave in 1 second is equivalent to the 170 meters down to the canyon wall plus the 170 meters back from the canyon wall.
#1
for the block of mass 5 kg normal force is given as


friction force is given as


Net force is given as


now we know that



#2
Normal force is given as



now we know that


as object moves with constant velocity

now for coefficient of friction we can use



#3
net force upwards is given as

mass is given as

now as per newton's law we can say



#4
As we know that when block is sliding on rough surface
part a)
net force = applied force - frictional force




part b)
for coefficient of friction we can use


here normal force is given as

now we have

#5
if an object is initially at rest and moves 20 m in 5 s
so we can use kinematics to find out the acceleration



now net force is given as


#6
an object travelling with speed 25 m/s comes to stop in 1.5 s
so here acceleration of object is given as


now the force is gievn as


Answer:
λ= 5.24 × 10 ⁻² nC/cm
Explanation:
Given:
distance r = 4.10 cm = 0.041 m
Electric field intensity E = 2300 N/C
K = 9 x 10 ⁹ Nm²/C
To find λ = linear charge density = ?
Sol:
we know that E= 2Kλ / r
⇒ λ = -E r/2K (-ve sign show the direction toward the wire)
λ = (- 2300 N/C × 0.041 m) / 2 × 9 x 10 ⁹ Nm²/C
λ = 5.24 × 10 ⁻⁹ C/m
λ = 5.24 nC/m = 5.24 nC/100 cm
λ= 5.24 × 10 ⁻² nC/cm
Answer:
cudkldllfkfklldldlflfkfkjkkfkfkfllflfkfkkkfllf