The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet:
Answer:
a = 2 m/s^2
which agrees with the third answer option provided.
Explanation:
Recall the kinematic formula for displacement under the action of a constant acceleration "a":
yf - yi = 1/2 a t^2
using the information provided this equation becomes:
9 = 1/2 a (3)^2
solve for a:
9 * 2 / 9 = a
then a = 2 m/s^2
which agrees with the third answer option provided.
Answer:
Explanation:
Time of flight = 2 x u sinα / g where u sinα is vertical component of projectile's velocity u .
So Time of flight = 2 x vertical component / g
vertical component = constant
g is also constant so
Time of flight will also be constant .
It will remain unchanged .
Answer:
Solar panels
sun light into electricity
Answer:
It should fly 8° to west of south at 430km/h
Explanation:
According to the diagram. X components for both velocities must have the same magnitude in order to get the resultant velocity due south.
Solving for α:
α = 8.03°