Answer:
(a) 42 N
(b)36.7 N
Explanation:
Nomenclature
F= force test line (N)
W : fish weight (N)
Problem development
(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed
We apply Newton's first law of equlibrio because the system moves at constant speed:
∑Fy =0
F-W= 0
42N -W =0
W = 42N
(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²
We apply Newton's second law because the system moves at constant acceleration:
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
∑Fy =m*a
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
F-W= ( W/9.8 )*a
42-W= ( W/9.8 )*1.41
42= W+0.1439W
42=1.1439W
W= 42/1.1439
W= 36.7 N
Main features of RCCB are:
- Both wires phase and neutral are connected through RCCB.
- Whenever there is any ground fault occurs, then it trips the circuit.
- The number of current supplies through the line should go back through neutral.
- These are a very effective type of shock protection.
A)
Atmospheric pressure is 101325 Pa.
Pressure = Force / Area
Area of table = 1.5 x 2.2
= 3.3 m²
Force = 101325 x 3.3
= 334 kN
B)
According to Newton's third law, every action has an equal and opposite reaction. Thus, the upward force is equal to the force acting downward on the table and is being balanced. The force is 334 kN in the upward direction.
Answer:
light reflects off the objects and enter our eyes