Answer:
The answer is number 2 :)
We can solve the problem by using the first law of thermodynamics:

where
is the change in internal energy of the system
is the heat absorbed by the system
is the work done by the system on the surrounding
In this problem, the work done by the system is

with a negative sign because the work is done by the surrounding on the system, while the heat absorbed is

with a negative sign as well because it is released by the system.
Therefore, by using the initial equation, we find

Answer:
Both objects will undergo the same change in velocity
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of object
Any object which is falling has only the acceleration due to gravity.

The acceleration due to gravity on Earth is 9.81364 m/s²
So, the speeds of the objects will change at an equal rate of 9.81364 m/s² but the change will be negative when an object is thrown up.
Hence, both objects will undergo the same change in velocity.
Answer:

Explanation:
Given data
Electric potential at point a is Ua=5.4×10⁻⁸J
q₂ moves to point b where a negative work done on it
Required
Electric potential energy Ub
Solution
When a particle moves from a point where the potential is Ua to a point where it is Ub the change in potential energy is equal to work done where the force exerted on the charge is conservative and work done is given by:

Now substitute the given values
So

Answer:

Explanation:
The speed increased from 2.0 * 10^7 m/s to 4.0 * 10^7 m/s over a 1.2 cm distance.
Let us find the acceleration:


Electric force is given as the product of charge and electric field strength:
F = qE
where q = electric charge
E = Electric field strength
Force is generally given as:
F = ma
where m = mass
a = acceleration
Equating both:
ma = qE
E = ma / q
For an electron:
m = 9.11 × 10^{-31} kg
q = 1.602 × 10^{-19} C
Therefore, the electric field strength of the electron is:
