If the probes are identical, then the one that feels a larger gravitational
force is orbiting closer to Jupiter than the other one is.
If they're not identical, then the one with greater mass will feel more
gravitational force than the one with less mass, even if they're both
the same distance from Jupiter. (We know this from the experimental
observation that fatter people weigh more, even on Earth.)
Answer:
1.17 m
Explanation:
From the question,
s₁ = vt₁/2................ Equation 1
Where s₁ = distance of the reflecting object for the first echo, v = speed of the sound in air, t₁ = time to dectect the first echo.
Given: v = 343 m/s, t = 0.0115 s
Substitute into equation 1
s₁ = (343×0.0115)/2
s₁ = 1.97 m.
Similarly,
s₂ = vt₂/2.................. Equation 2
Where s₂ = distance of the reflecting object for the second echo, t₂ = Time taken to detect the second echo
Given: v = 343 m/s, t₂ = 0.0183 s
Substitute into equation 2
s₂ = (343×0.0183)/2
s₂ = 3.14 m
The distance moved by the reflecting object from s₁ to s₂ = s₂-s₁
s₂-s₁ = (3.14-1.97) m = 1.17 m
Boyle's law says that the volume of a gas varies inversely with the pressure. When the volume of a certain gas is 4l , the pressure is 720 kpa (kilopascals). What is the pressure when the volume is 10l ?
Answer:
How long or wide something is
Explanation: