Answer:
If we increase the temperature in a reactor by 54 degrees Fahrenheit [54°F], the temperature will increase by 12.22 degrees Celsius [12.22 ⁰C]
Explanation:
To determine the number of degrees Celsius the temperature will be increased, we convert from Fahrenheit to Celsius.
Converting from Fahrenheit to degree Celsius
54°F -----> °C
54 = 1.8°C + 32
54-32 = 1.8°C
22 = 1.8°C
°C = 22/1.8
= 12.22 °C
Thus, 54°F -----> 12.22 °C
Therefore, If we increase the temperature in a reactor by 54degrees Fahrenheit [54°F], the temperature will increase by 12.22 degrees Celsius [12.22 ⁰C]
Answer:
0.04kg
Explanation:
Explanation in pics:
The formula for kinetic energy is KE = 1/2mv². So now the question asks for the mass, not KE. So we need to rearrange the formula so that we are calculating the mass. So, the formula for mass is m=KE/(1/2v²). Now we just substitute the values into the formula. Then just follow what it shows in the pic
Answer:
v_f = 1.05 m/s
Explanation:
From conservation of energy;
E_f = E_i
Thus,
(1/2)m(v_f)² + (1/2)I(ω_f)² + m•g•h_f + (1/2)k•(x_f)² = (1/2)m(v_i)² + (1/2)I(ω_i)² + m•g•h_i + (1/2)k•(x_i)²
This reduces to;
(1/2)m(v_f)² + (1/2)Ik(x_f)² = (1/2)k•(x_i)²
Making v_f the subject, we have;
v_f = [√(k/m)] * [√((x_i)² - (x_f)²)]
We know that ω = √(k/m)
Thus,
v_f = ω[√((x_i)² - (x_f)²)]
Plugging in the relevant values to obtain;
v_f = 17.8[√((0.068)² - (0.034)²)]
v_f = 17.8[0.059] = 1.05 m/s
Using Dimensional analysis
15min/1·1hr/60min
15/1·1hr/60=15/60hr
.25hr
.25hr·12.5Km/h=3.125Km