Answer: 2.7 m/s
Explanation:
Given the following :
Period (T) = 8.2 seconds
Radius = 3.5 m
The tangential speed is given as:
V = Radius × ω
ω = angular speed = (2 × pi) / T
ω = (2 × 22/7) / 8.2
ω = 6.2857142 / 8.2
ω = 0.7665505
Therefore, tangential speed (V) equals;
r × ω
3.5 × 0.7665505 = 2.6829268 m/s
2.7 m/s
Answer: a.) Roughness of the surfaces in contact with each other .
Higher the roughness of surfaces in contact with each other, greater is the friction between bodies. Force of friction will be less between smooth surfaces.
b.) Weight of the sliding/rolling body: greater the weight of the moving body on the surface, more is the force of friction on the body by the surface.
I hope this helps
Since nuclear fusion in the sun creates energy from matter, Einstein's formula E=mc² states that matter and energy are equal.
To find the answer, we have to know more about the nuclear fusion.
<h3>What is
nuclear fusion?</h3>
- We are aware that the sun can achieve nuclear fusion by the fusion of hydrogen atoms.
- These atoms need to get closer to one another in order to fuse.
- Since both protons inside each nucleus are positively charged, they attempt to repel one another as they get closer to one another.
- If this issue cannot be solved, nuclear fusion in the sun cannot occur.
Thus, we can conclude that, since nuclear fusion in the sun creates energy from matter, Einstein's formula E=mc² states that matter and energy are equal.
Learn more about nuclear fusion here:
brainly.com/question/25663405
#SPJ4
Answer:
Decrease the number of gas particles, increase the object's area, and reduce the temperature of the gas
Explanation:
<u>TEMPERATURE</u>:
Decreasing the temperature will slow down the molecules. Hence, less no. of collisions will take place between walls of object and molecules. This will result in decrease of pressure.
Therefore, the pressure of a gas can be decreased by increasing its temperature.
<u>NUMBER OF GAS PARTICLES</u>:
Decreasing the number of particles will result in less no. of collisions, hence decreasing the pressure.
Therefore, the pressure of a gas can be decreased by decreasing its no. of molecules or no. of particles.
<u>AREA OF OBJECT:</u>
The pressure is given by the formula:
where,
A = Area of Object
Therefore, the pressure of a gas can be decreased by increasing area of object.
So, the correct option is:
<u>Decrease the number of gas particles, increase the object's area, and reduce the temperature of the gas</u>