A. Base , salt , water,acid
Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
a) load in Newton is 96,138 b) 129.314mm
Explanation:
Stress = force/ area (cross sectional area of the bronze)
Force(load) = 294*10^6*327*10^-6 = 96138N
b) modulus e = stress/ strain
Strain = stress/ e = (294*10^6)/ (121*10^ 9) = 2.34* 10^ -3
Strain = change in length/ original length = DL/ 129
Change in length DL = 129 * 2.34*10^ -3 = 0.31347
Maximum length = change in length + original length = 129.314mm
Answer:

Explanation:
Rydberg formula is used to calculate the wavelengths of the spectral lines of many chemical elements. For the hydrogen, is defined as:

Where
is the Rydberg constant for hydrogen and
,
are the lower energy state and the higher energy state, respectively.

That's false. Displacement would be (r2 - r1) .