Answer:
Step-by-step explanation:
Our inequality is |125-u| ≤ 30. Let's separate this into two. Assuming that (125-u) is positive, we have 125-u ≤ 30, and if we assume that it's negative, we'd have -(125-u)≤30, or u-125≤30.
Therefore, we now have two inequalities to solve for:
125-u ≤ 30
u-125≤30
For the first one, we can subtract 125 and add u to both sides, resulting in
0 ≤ u-95, or 95≤u. Therefore, that is our first inequality.
The second one can be figured out by adding 125 to both sides, so u ≤ 155.
Remember that we took these two inequalities from an absolute value -- as a result, they BOTH must be true in order for the original inequality to be true. Therefore,
u ≥ 95
and
u ≤ 155
combine to be
95 ≤ u ≤ 155, or the 4th option
Step-by-step explanation:
The outer angle at the top C of the ABC is 112 °. If the bisector of the side AB intersects the side AC at point Q and the segment BQ is perpendicular to AC, find the magnitude of ABC
Answer:
Option C. y = -2x + 3
Step-by-step explanation:
When we look at this function we see that it has a negative slope and the y-intercept is equal to (0,3). From this we know that the function we are looking for will be looking like...
y = mx + 3
And as I said earlier since the slope is negative, the only right option is this case will be Option C
Answer:
Step-by-step explanation:
10/25=20/50=40/100
6/8=3/4=12/16
3/5=6/10=60/100
1/10=10/100