Check the picture below.
as you can see, the graph of the volume function comes from below goes up up up, reaches a U-turn then goes down down, U-turns again then back up to infinity.
the maximum is reached at the close up you see in the picture on the right-side.
Why we don't use a higher value from the graph since it's going to infinity?
well, "x" is constrained by the lengths of the box, specifically by the length of the smaller side, namely 5 - 2x, so whatever "x" is, it can't never zero out the smaller side, and that'd happen when x = 2.5, how so? well 5 - 2(2.5) = 0, so "x" whatever value is may be, must be less than 2.5, but more than 0, and within those constraints the maximum you see in the picture is obtained.
Part A
<h3>Answer:
h^2 + 4h</h3>
-------------------
Explanation:
We multiply the length and height to get the area
area = (length)*(height)
area = (h+4)*(h)
area = h(h+4)
area = h^2 + 4h .... apply the distributive property
The units for the area are in square inches.
===========================================================
Part B
<h3>Answer:
h^2 + 16h + 60</h3>
-------------------
Explanation:
If we add a 3 inch frame along the border, then we're adding two copies of 3 inches along the bottom side. The h+4 along the bottom updates to h+4+3+3 = h+10 along the bottom.
Similarly, along the vertical side we'd have the h go to h+3+3 = h+6
The old rectangle that was h by h+4 is now h+6 by h+10
Multiply these expressions to find the area
area = length*width
area = (h+6)(h+10)
area = x(h+10) ..... replace h+6 with x
area = xh + 10x .... distribute
area = h( x ) + 10( x )
area = h( h+6 ) + 10( h+6 ) .... plug in x = h+6
area = h^2+6h + 10h+60 .... distribute again twice more
area = h^2 + 16h + 60
You can also use the box method or the FOIL rule as alternative routes to find the area.
The units for the area are in square inches.
Answer:
Step-by-step explanation:
As per the problem, the given triangle is a right triangle. This is signified by the box around one of its angles, this box states that the angle it is surrounding is a right angle.
Since it is a right triangle, one can use the Pythagorean theorem to solve this problem. The Pythagorean theorem states that; (), where () and () are the legs of the right triangle, or the sides adjacent to the right angle. () is the hypotenuse or the side opposite the right angle.
Substitute in the given values and solve, note that () represents the unknown leg (side).
Inverse operations,
The last one is the answer