1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
13

How much work is required to move an electron from the positive terminal to the negative terminal of a 12 V battery? (Knight 21.

4) A 20 nC charge is moved from a point where V=150V to point where V=-50V. How much work is done to move the charge?
Engineering
1 answer:
Ray Of Light [21]3 years ago
6 0

Answer:

work which is required to move an electron from the positive terminal to the negative terminal is

-4μJ

W = -4μJ

Explanation:

Work required to move the charge

W = qΔV

initial point V₁ = 150V

Final point V₂ = -50V

W = q(V₂ -V₁)

= 20 × 10⁹(-50 - 150)

W = -4μJ

work which is required to move an electron from the positive terminal to the negative terminal is

-4μJ

You might be interested in
What are the philological elements of interior design most like?
sp2606 [1]

Answer:

Ea public address glven via the intercom system of a large buildingxplanation:

7 0
2 years ago
We can process oil into a lot of useful fuels to run our cars, trucks, and even airplanes. Oil is used for making lots of other
Ostrovityanka [42]

Answer:

Explanation:

Products of oil in our everyday life:

(1) Petro-Chemical Feedstock: These are by product of Refining of Oil which it is used extensively to make PET bottles, Paints, Polyester Shirts, Pocket combs e.t.c

(2) Asphalt : Used extensively to make Motor Road, highways

(3) Plastics : we use plastics in our everyday life, this is also a product of Refining of crude oil e.g PVC, Telephone casing, Tapes e.t.c

(4) Lubricating Oil/Grease : This is another product from crude oil Fractional Distillation.

(5) Propane/ Cooking Gas: This is also a product from oil which is used in our everyday life for cooking, grilling etc.

4 0
3 years ago
If the rotational speed of a pump motor is reduced by 35%, what is the effect on the pump performance in terms of capacity, head
FinnZ [79.3K]

Answer:

- the capacity of the pump reduces by 35%.

- the head gets reduced by 57%.

the power consumption by the pump is reduced by 72%

Explanation:

the pump capacity is related to the speed as speed is reduces by 35%

so new speed is (100 - 35) = 65% of orginal speed

speed Q ∝ N ⇒ Q1/Q2 = N1/N2

Q2 = (N2/N1)Q1    

Q2 = (65/100)Q1

which means that the capacity of the pump is also reduces by 35%.

the head in a pump is related by

H ∝ N² ⇒ H1/H2 = N1²/N2²

H2 = (N2N1)²H1

H2 = (65/100)²H1 = 0.4225H1

so the head gets reduced by 1 - 0.4225 = 0.5775 which is 57%.

Now The power requirement of a pump is related as

P ∝ N³ ⇒ P1/P2 = N1³/N2³

P2 = (N2/N1)³P1

H2 = (65/100)²P1 = 0.274P1

So the reduction in power is 1 - 0.274 = 0.725 which is 72%

Therefore for a reduction of 35% of speed there is a reduction of 72% of the power consumption by the pump.  

8 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
3 years ago
In some synchronizer applications, the clock frequency f is substituted for the parameter a in metastability MTBF calculations,
Contact [7]

Answer:

Please see the attached file for the complete answer.

Explanation:

Download pdf
4 0
3 years ago
Other questions:
  • To operate a vehicle in Florida, you must
    10·2 answers
  • Explain the differences between 1- Energy 2- Power 3- Work 4- Heat Your answer should explain the mathematica and physical meani
    5·1 answer
  • Determine the direct runoff and streamflow given the following unit hydrograph. The rainfall is collected at 4-hour intervals an
    14·1 answer
  • What is the horizontal distance from Point A to toe of slope?
    12·1 answer
  • An ideal Diesel cycle has a compression ratio of 17 and a cutoff ratio of 1.3. Determine the maximum temperature of the air and
    10·1 answer
  • A two-phase mixture of water and steam with a quality of 0.63 and T = 300F expands isothermally until only saturated vapor rema
    7·1 answer
  • For an AC machine, what percentage of power is at the negative terminal?
    14·1 answer
  • A large building will need several different types of workmen to install and repair pipes for water, heating,
    10·1 answer
  • A wing generates a lift L when moving through sea-level air with a velocity U. How fast must the wing move through the air at an
    7·1 answer
  • What is the answer???
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!