Answer: a. 0.4667
b. 0.4667 and C 0.0667
Explanation:
Given Data:
N = population size (10)
n = random selection (2)
r = number of observations = 7
Therefore
f(y) = ( r/y ) ( N - r / n - y ) / ( N /n )
When y = 1
f(1) = ( 7/1 ) ( 10 - 7 / 2 -1 ) / ( 10/2 )
= 7 / 15
= 0.4667
When y = 2
f(2) = ( 7/2 ) ( 10 - 7 / 2 -2 ) / ( 10/2 )
= 7 / 15
= 0.4667
When y = 0
f(0) = ( 7/0 ) ( 10 - 7 / 2 -0) / ( 10/2 )
= 1 / 15
= 0.0667
Answer:
Check the explanation
Explanation:
Code
.ORIG x4000
;load index
LD R1, IND
;increment R1
ADD R1, R1, #1
;store it in ind
ST R1, IND
;Loop to fill the remaining array
TEST LD R1, IND
;load 10
LD R2, NUM
;find tw0\'s complement
NOT R2, R2
ADD R2, R2, #1
;(IND-NUM)
ADD R1, R1, R2
;check (IND-NUM)>=0
BRzp GETELEM
;Get array base
LEA R0, ARRAY
;load index
LD R1, IND
;increment index
ADD R0, R0, R1
;store value in array
STR R1, R0,#0
;increment part
INCR
;Increment index
ADD R1, R1, #1
;store it in index
ST R1, IND
;go to test
BR TEST
;get the 6 in R2
;load base address
GETELEM LEA R0, ARRAY
;Set R1=0
AND R1, R1,#0
;Add R1 with 6
ADD R1, R1, #6
;Get the address
ADD R0, R0, R1
;Load the 6th element into R2
LDR R2, R0,#0
;Display array contents
PRINT
;set R1 = 0
AND R1, R1, #0
;Loop
;Get index
TOP ST R1, IND
;Load num
LD R3,NUM
;Find 2\'s complement
NOT R3, R3
ADD R3, R3,#1
;Find (IND-NUM)
ADD R1, R1,R3
;repeat until (IND-NUM)>=0
BRzp DONE
;load array address
LEA R0, ARRAY
;load index
LD R1, IND
;find address
ADD R3, R0, R1
;load value
LDR R1, R3,#0
;load 0x0030
LD R3, HEX
;convert value to hexadecimal
ADD R0, R1, R3
;display number
OUT
;GEt index
LD R1, IND
;increment index
ADD R1, R1, #1
;go to top
BR TOP
;stop
DONE HALT
;declaring variables
;set limit
NUM .FILL 10
;create array
ARRAY .BLKW 10 #0
;variable for index
IND .FILL 0
;hexadecimal value
HEX .FILL x0030
;stop
.END
The advantage of a pareto chart is to make sure they have all of their tools
Answer:
Codes for each of the problems are explained below
Explanation:
PROBLEM 1 IN C++:
#include<iostream>
using namespace std;
//fib function that calculate nth integer of the fibonacci sequence.
void fib(int n){
// l and r inital fibonacci values for n=1 and n=2;
int l=1,r=1,c;
//if n==1 or n==2 then print 1.
if(n==1 || n==2){
cout << 1;
return;
}
//for loop runs n-2 times and calculates nth integer of fibonacci sequence.
for(int i=0;i<n-2;i++){
c=l+r;
l=r;
r=c;
cout << "(" << i << "," << c << ") ";
}
//prints nth integer of the fibonacci sequence stored in c.
cout << "\n" << c;
}
int main(){
int n; //declared variable n
cin >> n; //inputs n to find nth integer of the fibonacci sequence.
fib(n);//calls function fib to calculate and print fibonacci number.
}
PROBLEM 2 IN PYTHON:
def fib(n):
print("fib({})".format(n), end=' ')
if n <= 1:
return n
else:
return fib(n - 1) + fib(n - 2)
if __name__ == '__main__':
n = int(input())
result = fib(n)
print()
print(result)
Answer:
The strength coefficient is K = 591.87 MPa
Explanation:
We can calculate the strength coefficient using the equation that relates the tensile strength with the strain hardening index given by

where Sut is the tensile strength, K is the strength coefficient we need to find and n is the strain hardening index.
Solving for strength coefficient
From the strain hardening equation we can solve for K

And we can replace values

Thus we get that the strength coefficient is K = 591.87 MPa