1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zheka24 [161]
3 years ago
6

1) Pareto charts are used to: A) identify inspection points in a process. B) outline production schedules. C) organize errors, p

roblems, or defects. D) show material flow. E) show the range of values of a measurement and the frequency with which each value occurs.
Engineering
1 answer:
zloy xaker [14]3 years ago
4 0

Answer:

E) Please see below as the answer is self -explanatory.

Explanation:

The pareto chart, is used in quality control, and is a combined type of graph, that uses a line-type curve to denote the cumulative percentages of the different types of defects found in a sample (so the maximum value is 100%)

Also, it features a bar chart, which shows the relative occurrence of the different values (as in a histogram) which allows to find easily which defects are more relevant ones, alerting in this way about unacceptable deviations in the manufacturing process (if we are producing a good under given quality standards, for instance).

You might be interested in
Which explanation best identifies why the company in the following scenario has decided against investing in solar energy?
pickupchik [31]

Answer:

The company found the cost of the required photovoltaic cells too expensive.

Explanation:

Solar energy can be used as an alternative source of supply for fuel. Solar energy is a renewable source of energy, that is it keeps on replenishing every day. Also solar energy does not require a lot of maintenance.

The cost required is starting a solar system is very high because one needs to buy solar panel, photovoltaic cells for batteries, inverters and so on.

From the question, the company decided against solar energy for the time being. This means that probably in the future they might consider it. Therefore it is as a result of the economic situation of the company that they have not set up a solar system because the cost of the required photovoltaic cells too expensive.

8 0
3 years ago
The human eye, as well as the light-sensitive chemicals on color photographic film, respond differently to light sources with di
jeka57 [31]

Answer:

a) at T = 5800 k  

  band emission = 0.2261

at T = 2900 k

  band emission = 0.0442

b) daylight (d) = 0.50 μm

    Incandescent ( i ) =  1 μm

Explanation:

To Calculate the band emission fractions we will apply the Wien's displacement Law

The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as

F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )

<em>Values are gotten from the table named: blackbody radiati</em>on functions

<u>a) Calculate the band emission fractions for the visible region</u>

at T = 5800 k  

  band emission = 0.2261

at T = 2900 k

  band emission = 0.0442

attached below is a detailed solution to the problem

<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>

For daylight ( d ) = 2898 μm *k / 5800 k  = 0.50 μm

For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm

3 0
3 years ago
A small lake with volume of 160,000 m^3 receives agricultural drainage waters that contain 150 mg / L total dissolved solids (TD
Stels [109]

Answer:

Explanation:

Given that : -

The desirable limit is 500 mg / l , but

allowable upto 2000 mg / l.

The take volume is V = 160.000 m3

V = 160 , 000 x 103 l

The crainage gives 150 mg / l and lake has initialy 100 mg / l

Code of tpr frpm drawn = 150 x 60, 000 x 1000

Ci = 9000 kg / gr

Cl = 100 x 160,000 x 1000

Cl = 16, 000 kg

Since allowable limit = 2000 mg / l

Cn = ( 2000 x 160, 00 x 1000 )

= 320, 000 kg

so, each year the rate increases, by 9000 kg / yr

Read level = ( 320, 000 - 16,000 )

Li = 304, 000 kg

Tr=<u>304,000</u>

      900

=33.77

5 0
3 years ago
Read 2 more answers
Which option best describes a way engineers can provide maintenance, diagnoses, upgrades, or duplicates even for products they d
guajiro [1.7K]

Answer:

Reverse Engineering

Explanation:

Just took the test

4 0
2 years ago
A hot air balloon is used as an air-vehicle to carry passengers. It is assumed that this balloon is sealed and has a spherical s
monitta

Answer:

a. \dfrac{D_{1}}{ D_{2}}  =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n} which is constant therefore, n = constant

b. The temperature at the end of the process is 109.6°C

c. The work done by the balloon boundaries = 10.81 MJ

The work done on the surrounding atmospheric air = 10.6 MJ

Explanation:

p₁ = 100 kPa

T₁ = 27°C

D₁ = 10 m

v₂ = 1.2 × v₁

p ∝ α·D

α = Constant

v_1 = \dfrac{4}{3} \times  \pi \times r^3

\therefore v_1 = \dfrac{4}{3} \times  \pi \times  \left (\dfrac{10}{2}  \right )^3 = 523.6 \ m^3

v₂ = 1.2 × v₁ = 1.2 × 523.6 = 628.32 m³

Therefore, D₂ = 10.63 m

We check the following relation for a polytropic process;

\dfrac{p_{1}}{p_{2}} = \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} = \left (\dfrac{T_{1}}{T_{2}}   \right )^{\dfrac{n}{n-1}}

We have;

\dfrac{\alpha \times D_{1}}{\alpha \times D_{2}} = \left (\dfrac{ \dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_2}{2}  \right )^3}{\dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_1}{2}  \right )^3}   \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

\dfrac{D_{1}}{ D_{2}} = \left (\dfrac{   \left{D_2}  }{ {D_1}}   \right )^{3\times n} =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n}

\dfrac{ D_{1}}{ D_{2}} = \left ( 1.2  \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

log  \left (\dfrac{D_{1}}{ D_{2}}\right )  =  -3\times n \times log\left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )

n = -1/3

Therefore, the relation, pVⁿ = Constant

b. The temperature T₂ is found as follows;

\left (\dfrac{628.32 }{523.6}   \right )^{-\dfrac{1}{3} } = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{-\dfrac{1}{3}}{-\dfrac{1}{3}-1}} = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{1}{4}}

T₂ = 300.15/0.784 = 382.75 K = 109.6°C

c. W_{pdv} = \dfrac{p_1 \times v_1 -p_2 \times v_2 }{n-1}

p_2 = \dfrac{p_{1}}{ \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} } =  \dfrac{100\times 10^3}{ \left (1.2) \right  ^{-\dfrac{1}{3} } }

p₂ =  100000/0.941 = 106.265 kPa

W_{pdv} = \dfrac{100 \times 10^3 \times 523.6 -106.265 \times 10^3  \times 628.32 }{-\dfrac{1}{3} -1} = 10806697.1433 \ J

The work done by the balloon boundaries = 10.81 MJ

Work done against atmospheric pressure, Pₐ, is given by the relation;

Pₐ × (V₂ - V₁) = 1.01×10⁵×(628.32 - 523.6) = 10576695.3 J

The work done on the surrounding atmospheric air = 10.6 MJ

4 0
3 years ago
Other questions:
  • How I do I get nut out of sheets​
    8·2 answers
  • ). A company periodically tests its product for tread wear under simulated conditions. Thirty random samples, each containing 5
    11·1 answer
  • A 0.25" diameter A36 steel rivet connects two 1" wide by .25" thick 6061-T6 Al strips in a single lap shear joint. The shear str
    12·1 answer
  • The inner surface of a hollow cylinder is subjected to tangential and axial stresses of 40,000 and 24,000 psi, respectively. Det
    9·1 answer
  • What are the important things to remember when arriving for an interview?
    15·1 answer
  • 1 kg of oxygen is heated from 20 to 120°C. Determine the amount of heat transfer required when this is done during a (a) constan
    7·1 answer
  • Give three examples of how engineering has made human life better in your opinion.
    13·1 answer
  • Solid Isomorphous alloys strength
    11·1 answer
  • Transcript
    7·1 answer
  • The ratio between the modulating signal voltage and the carrier voltage is called?.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!