The type of relationship formed when a megabat eats a fig and drops the seeds in a new location is COMENSALISM. It is an ecological interaction.
<h3>What is commensalism?</h3>
Commensalism is a type of ecological interaction in which one organism benefits (in this case, the tree) and the other organism neither benefits nor harm (the megabat).
Mutualism is a type of ecological association in which both organisms benefit from such interaction.
Conversely, parasitism is a type of ecological interaction in which one organism benefits and the other organism is harmed.
Learn more about commensalism here:
brainly.com/question/16712254
Direction. Velocity is a vector that describes both speed and direction, while speed is a scalar that describes only speed regardless of direction.
My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height.
Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
<h3>How does tension affect the speed of a wave in a rope?</h3>
The Increase of the tension placed on a string is one that tends to increases the speed of a wave, which in turn also increases the frequency of any given length.
Therefore, My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height. Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
Learn more about tension from
brainly.com/question/2008782
#SPJ4
See full question below
(a) If a long rope is hung from a ceiling and waves are sent up the rope from its lower end, why does the speed of the waves change as they ascend? (b) Does the speed of the ascending waves increase or decrease? Explain.
Answer: friction reduces the speed during motion
Explanation:
The more the friction, the lesser the speed during motion