Answer:
.
Explanation:
Power carried by the line 
Voltage across the line Volts
Current flowing in the line =i
Size of magnetic field =B
Distance from the line
Formula Used:
Current flowing is given as

Magnetic field by the current carrying wire is given as

Inserting the values

Conclusion:
Thus, the magnetic field comes out to be
.
Answer:
electrical conductivity in liquid solutions depends on the availability of free ions.
Intensity of electromagnetic wave is given as
![I = 2[\frac{B_{rms}^2}{2\mu_0}\times c]](https://tex.z-dn.net/?f=I%20%3D%202%5B%5Cfrac%7BB_%7Brms%7D%5E2%7D%7B2%5Cmu_0%7D%5Ctimes%20c%5D)
given that


here we know that


now we have


now we will have


frequency of wave is given as


now the induced EMF is given as



Answer:
a) They are in the same point
b) t = 0 s, t = 2.27 s, t = 5.73 s
c) t = 1 s, t = 4.33 s
d) t = 2.67 s
Explanation:
Given equations are:


Constants are:

a) "Just after leaving the starting point" means that t = 0. So, if we look the equations, both
and
depend on t and don't have constant terms.
So both cars A and B are in the same point.
b) Firstly, they are in the same point in x = 0 at t = 0. But for generalized case, we must equalize equations and solve quadratic equation where roots will give us proper t value(s).


s,
s
c) Since the distance isn't changing, the velocities are equal. To find velocities, we need to take the derivatives of both equations with respect to time and equalize them.

s,
s
d) For same acceleration, we we need to take the derivatives of velocity equations with respect to time and equalize them.
s
Answer: D = 16m
Explanation: given values: a = 2 m/s2, v = 4 m/s
In this case we have to determine the diameter of the Ferris wheel.
Diameter of circle is given as: D = 2.r.
First we have to find radius of wheel. The best way to find that is using the centripetal acceleration equation: a = v2/r
Plug in values in above equation to find radius: 2 m/s2 = (4 m/s)2/r 2 m/s2 = (16 m2/s2)/r r = (16 m2/s2)/2 m/s2
r = 8.0m
Diameter of Ferris wheel is:
D = 2.r.
D = 2.8m
D = 16m