<u>Answer:</u> The rate law for the reaction is ![\text{Rate}=k[NO_3][CO]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO_3%5D%5BCO%5D)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
In a mechanism of the reaction, the slow step in the mechanism determines the rate of the reaction.
For the given chemical reaction:

The intermediate reaction of the mechanism follows:
Step 1: 
Step 2: 
As, step 2 is the slow step. It is the rate determining step
Rate law for the reaction follows:
![\text{Rate}=k[NO_3][CO]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO_3%5D%5BCO%5D)
Hence, the rate law for the reaction is written above.
The question is incomplete. Here is the complete question.
An atom of lead has a radius of 154 pm and the average orbitalspeed of the electron in it is about 1.8x
m/s. Calculate the least possible uncertainty in a measurement of the speed of an electron in an atom of lead. Write your answer as a percentage of the average speed, and round it to significant 2 digits.
Answer: v% = 0.21 m/s
Explanation: To calculate the uncertainty, use <u>Heisenberg's Uncertainty Principle</u>, which states that: ΔpΔx≥
where h is <u>Planck's constant</u> and it is equal to 6.626.
m²kg/s.
Since p (momentum) is p = m.v:
mΔv.Δx ≥ 
Δv = 
Given that: r = x = 1.54.
m and mass of an electron is m=9.1.
kg
Δv = 
Δv = 0.0376.
As percentage of average speed:
Δv.
.100% =
.10² = 0.021.10 = 0.21%
The least possible uncertainty in a speed of an electron is 0.21%.
Answer:
siof4 su8f adfi5 9id7 mdsyfn8 dsjfd8ie3 4yb4uj 4bnu4b 4uj4k 38h1487y76 bis4can d2f9id fvs98nd
Explanation:us8s f7 ds8a das8 jf7sd 87sd 45s67f8
A.) covalent
c.) covalent
b.) ionic
d.) covalent