Answer:
no. Because there is always that one person who doesn't want to
The nulear charge is the number of protons.
As the number of protons increases, the nuclear charge grows ant thhe pulling electrostatic force between them and electrons also grows, given that the electrostatic force is proportional to the magnitude of the charges.
As the number of electrons grows, they occupy outer shelss (farther from the nucleus). And the outer electrons will feel not only the atraction of the protons from the nucleus, but the repulsion of the inner electrons.
Then, we see that the increase of nuclear charge is opposed by the increase of core electrons, and the outer (valence) electrons are not so tied to the nucleus as the core electrons are.
This is called shielding effect. A way to quantify the shielding effect is through the effective nuclear charge which is the number of protons (Z) less the number of core electrons.
The more the number of core shells the greater the shielding effect experience by electros in the outermost shells.
The shielding effect, explains why the valence eletrons are more easily removed from the atom than core electrons, and also explains some trends of the periodic table: variationof the size of the atoms in a row, the greater the shielding efect, the less the atraction force felt by the outermos electron, the farther they are and the larger the atom.
The answer is c, relying on renewable energy sources
Explanation:
1. Thermochemical equation is balance stoichiometric chemical equation written with the phases of the reactants and products in the brackets along with the enthalpy change of the reaction.
The given correct thermochemical reactions are:


2. Phase change affect the value of the enthalpy change of the thermochemical equation. This is because change in phase is accompanied by change in energy. For example:


In both reaction phase of water is changing with change in energy of enthalpy of reaction.