Answer:
The carbocation intermediate reacts with a nucleophile to form the addition product.
Explanation:
The reaction of benzene with an electrophile is an electrophillic substitution reaction. Here the electrophile replaces hydrogen. There is no formation of carbocation as intermediate in the reaction. Infact there is transition state where the electorphile attacks on benzene ring and at the same time the hydrogen gets removed from the benzene. So a transition carbocation is formed.
The general mechanism is shown in the figure.
i) Attack of the electrophile on the benzene (which is the nucleophile)
ii) The carbocation intermediate loses a proton from the carbon bonded to the electrophile.
iii) the carbocation formation is the rate determining step.
iv) There is no formation of addition product.
Thus the wrong statement is
The carbocation intermediate reacts with a nucleophile to form the addition product.
Answer;
Water 1.0 g/mL 100°C colorless liquid
Explanation:
thats the answer
Answer:
TRIAL 1:
For “Event 0”, put 100 pennies in a large plastic or cardboard container.
For “Event 1”, shake the container 10 times. This represents a radioactive decay event.
Open the lid. Remove all the pennies that have turned up tails. Record the number removed.
Record the number of radioactive pennies remaining.
For “Event 2”, replace the lid and repeat steps 2 to 4.
Repeat for Events 3, 4, 5 … until no pennies remain in the container.
TRIAL 2:
Repeat Trial 1, starting anew with 100 pennies.
Calculate for each event the average number of radioactive pennies that remain after shaking.
Plot the average number of radioactive pennies after shaking vs. the Event Number. Start with Event 0, when all the pennies are radioactive. Estimate the half-life — the number of events required for half of the pennies to decay.
Explanation: