In their 1943 meeting at Casablanca, Allied leaders decided to invade Italy.
Answer:
Yes, there is enough evidence to say the proportions are the same.
Step-by-step explanation:
Null hypothesis: The proportions are the same.
Alternate hypothesis: The proportions are not the same.
Data given:
p1 = 51% = 0.51
n1 = 200
p2 = 48% = 0.48
n2 = 150
pooled proportion (p) = (n1p1 + n2p2) ÷ (n1 + n2) = (200×0.51 + 150×0.48) ÷ (200 + 150) = 174 ÷ 350 = 0.497
Test statistic (z) = (p1 - p2) ÷ sqrt[p(1-p)(1/n1 + 1/n2) = (0.51 - 0.48) ÷ sqrt[0.497(1-0.497)(1/200 + 1/150)] = 0.03 ÷ 0.054 = 0.556
The test is a two-tailed test. At 0.10 significance level the critical values -1.645 and 1.645
Conclusion:
Fail to reject the null hypothesis because the test statistic 0.556 falls within the region bounded by the critical values.
If the data set represents the number of rings each person is wearing, being: 0,2,4,0,2,3,2,8,6, the interquartile range of the data is 2. Being, 4 as the Q1, 3 as the Q2 or median, and 6 as the Q3. Where the formula of getting the interquartile range is IQR= Q1-Q2.
It’s twelve because you multiple x by 12 and get y.
How ever many times it goes into 100