Answer:

Explanation:
When two cars collide then the momentum of two cars will remains conserved
- Mass of two cars = 100 kg
-
Speed of car B = - 10 m/s
-
After collision the speed of car B = +8 m/s
By momentum conservation equation


Answer:
Geothermal power can provide consistent electricity throughout the day and year - continuous baseload power and flexible power to support the needs of variable renewable energy resources, such as wind and solar. Sustainable Investment.
Explanation:
THIS IS WHY WE SHOULD USE GEOTHERMAL ENERGY IN FUTURE
YOU CAN MARK ME AS BRAINIEST IF YOU WANT
Assuming that it continues to accelerate at the same rate it will take another 10 seconds to reach 40 m/s.
Answer:
Explanation:
Since the first question states that there is a change in the velocity from rest to 20 m/s in 10 seconds time interval. So the acceleration experienced by the car during this 10 seconds should be determined first as follows:
Acceleration = (final velocity-initial velocity)/Time
Acceleration = (20-0)/10 = 2 m/s².
So this means the car is traveling with an acceleration of 2 m/s².
As it is stated that the car continues to move with same acceleration, then in the second case, the acceleration is fixed as 2 m/s², initial velocity as 20 m/s and final velocity as 40 m/s. So the time taken for the car to reach this velocity with the constant acceleration value will be as follows:
Time = Change in velocity/Acceleration
Time = (40-20)/2 = 20/2=10 s
So again in another 10 seconds by the car to reach 40 m/s from 20 m/s. Similarly the car will take a total of 20 seconds to reach from rest to 40 m/s value for velocity.
Answer:
Power output = 
Explanation:
Given:
Mass of the elevator is, 
Height to which it is raised is, 
Acceleration due to gravity is, 
Time taken by the motor to raise the elevator is, 
Now, work done on the elevator by the motor is equal to the increase in the gravitational potential energy of the elevator.
Increase in gravitational potential energy is given as:

Therefore, work done by motor is, 
Now, we know that, power is work done in unit time. So, power output is given as:
![Power=\frac{W}{t}\\\\Power=\frac{10\times 10^4\ J}{5.0\ s}\\\\Power=2\times 10^4\ J/s\\\\Power=2\times 10^4\ W..........[1 W = 1\ J/s]](https://tex.z-dn.net/?f=Power%3D%5Cfrac%7BW%7D%7Bt%7D%5C%5C%5C%5CPower%3D%5Cfrac%7B10%5Ctimes%2010%5E4%5C%20J%7D%7B5.0%5C%20s%7D%5C%5C%5C%5CPower%3D2%5Ctimes%2010%5E4%5C%20J%2Fs%5C%5C%5C%5CPower%3D2%5Ctimes%2010%5E4%5C%20W..........%5B1%20W%20%3D%201%5C%20J%2Fs%5D)
Therefore, the power output of the first motor is 
And what finish the question