I'm trying to make an electromagnet that's strength is constantly getting incremented by small amounts every second. I need to know, which would have a greater effect on the electromagnet's strength, amps or volts? (I know increasing the turns and/or density of the magnet wire will increase the strength, but I am looking for answers other than that particular one.)
That's "<em><u>insolation</u></em>" ... not "insulation".
'Insolation' is simply the intensity of solar radiation over some area.
If 200 kW of radiation is shining on 300 m² of area, then the insolation is
(200 kW) / (300 m²) = <em>(666 and 2/3) watt/m²</em> .
Note that this is the intensity of the <em><u>incident</u></em> radiation. It doesn't say anything
about how much soaks in or how much bounces off.
Wait !
I just looked back at the choices, and realized that I didn't answer the question
at all. I have no idea what "1 sun" means. Forgive me. I have stolen your
points, and I am filled with remorse.
Wait again !
I found it, through literally several seconds of online research.
1 sun = 1 kW/m².
So 2/3 of a kW per m² = 2/3 of 1 sun
That's between 0.5 sun and 1.0 sun.
I feel better now, and plus, I learned something.
It's called gravity, it attract the sun toward the gravitational pull making everything circulate. I don't really know how to explain it though.
Answer:
4
Explanation:
The kilogram-meter per second (kg · m/s or kg · m · s -1 ) is the standard unit of momentum . Reduced to base units in the International System of Units ( SI ), a kilogram-meter per second is the equivalent of a newton-second (N · s), which is the SI unit of impulse .
A mechanical wave<span> requires an initial energy input. Once this initial energy is added, the </span>wave travels through<span> the medium until all its energy is transferred.</span>