Answer:
The final pressure is 90.1 atm.
Explanation:
Assuming constant temperature, we can solve this problem by using <em>Boyle's Law</em>, which states:
Where in this case:
We <u>input the given data</u>:
- 159 atm * 463 L = P₂ * 817 L
And <u>solve for P₂</u>:
The final pressure is 90.1 atm.
<u>We are given:</u>
The force applied on the poor hamster (F) = 12 N
Acceleration of the poor Hamster (a) = 8 m/s²
<u>Solving for the mass of the Poor Hamster:</u>
From newton's second equation of motion, we know that:
F = ma
<em>replacing the given values</em>
12 = 8 * m
m = 12/8 kg
m = 3/2 kg
The poor Hamster weighs 3/2 kg
Answer:
12. is the pressure equilibrium constant for the decomposition of ammonia at the final temperature of the mixture.
Explanation:

initially
3.0 atm 0 0
At equilibrium
(3.0-2p) p 3p
Equilibrium partial pressure of nitrogen gas = p = 0.90 atm
The expression of a pressure equilibrium constant will be given by :




12. is the pressure equilibrium constant for the decomposition of ammonia at the final temperature of the mixture.
Answer:
el primero es Li, y el segundo es ... oh, está cortado
Explanation: