Answer:
Acceleration = 9 × 10^5 m/s^2 ( deceleration )
Explanation:
From the first equation of motion:
V = u + at
15000 = 30000 + 60a
a = ( 15000-30000)/60
a = 9 × 10^5 m/s^2
When in the melting process particles start to move more freely when in the freezing process particles tend to slow and vibrate in place
True because a nuclear power produces tons of high level radioactive waste that has to be disposed of carefully
Answer:
Explained
Explanation:
Michelson contrast is used for patterns where the distribution of bright and dark segments is nearly equal.
It is given by:

where I_max = maximum illumination and I_min = minimum illumination
we know that
typically, I_min = 54% of I_max (general standard)
or I_min = 0.54 I_max
putting this value in above equation to get m
this approximately corresponds to m = 0.3 or 30%
hence, 30% recommended as the minimum Michelson contrast
Answer:
d = 1.954 Km
Explanation:
given,
total distance, D = 2.5 Km
in stretch A to B =
speed = 99 Km/h = 99 x 0.278 = 27.22 m/s time =t
in stretch B to C
time = 3.4 s
In stretch C to D
speed = 48 Km/h = 48 x 0.278 = 13.34 m/s time =t
we know,
distance = speed x time
distance of BC
using equation of motion
v = u + a t
27.22 = 13.34 - a x 3.4
a = 4.08 m/s²
uniform deceleration is equal to 4.08 m/s²
distance traveled in BC


s = 68.94 m

3000 = 27.5 t + 68.94 + 13.33 t
40.83 t = 2931.06
t = 71.79 s
distance travel in AB
distance = s x t
d = 27.22 x 71.79
d = 1954 m
d = 1.954 Km
distance between A and B is equal to 1.954 Km.