Answer:
18.1347 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s² = a

Total height the ball falls is 2.4619+14.3 = 16.7619 m

The speed at which the stone reaches the ground is 18.1347 m/s
Answer:
<h2>5.53 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>5.53 J</h3>
Hope this helps you
Explanation:
Area of ring 
Charge of on ring 
Charge on disk

![\begin{aligned}d v &=\frac{k d q}{\sqrt{x^{2}+a^{2}}} \\&=2 \pi-k \frac{a d a}{\sqrt{x^{2}+a^{2}}} \\v(1) &=2 \pi c k \int_{0}^{R} \frac{a d a}{\sqrt{x^{2}+a^{2}}} \cdot_{2 \varepsilon_{0}}^{2} R \\&=2 \pi \sigma k[\sqrt{x^{2}+a^{2}}]_{0}^{2} \\&=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}}[\sqrt{z^{2}+R^{2}}-(21)] \\&=\frac{\sigma}{2}(\sqrt{2^{2}+R^{2}}-2)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dd%20v%20%26%3D%5Cfrac%7Bk%20d%20q%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5C%26%3D2%20%5Cpi-k%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5Cv%281%29%20%26%3D2%20%5Cpi%20c%20k%20%5Cint_%7B0%7D%5E%7BR%7D%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5Ccdot_%7B2%20%5Cvarepsilon_%7B0%7D%7D%5E%7B2%7D%20R%20%5C%5C%26%3D2%20%5Cpi%20%5Csigma%20k%5B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%26%3D%5Cfrac%7B2%20%5Cpi%20%5Csigma%7D%7B4%20%5Cpi%20%5Cvarepsilon_%7B0%7D%7D%5B%5Csqrt%7Bz%5E%7B2%7D%2BR%5E%7B2%7D%7D-%2821%29%5D%20%5C%5C%26%3D%5Cfrac%7B%5Csigma%7D%7B2%7D%28%5Csqrt%7B2%5E%7B2%7D%2BR%5E%7B2%7D%7D-2%29%5Cend%7Baligned%7D)
Note: Refer the image attached
The time of fall for the two balloons is equal.
Here the conditions given resembles a free fall. Since the air resistance is negligible, gravitational force is the only force acting on both the balloons which means the two balloons are falling in a vacuum. In a vacuum, if two objects of different mass are thrown from the same height, both objects will reach the ground at the same time.
Free fall is nothing but a condition in which an object falls solely under the influence of gravity.
Therefore, the time of fall for both yellow and red water balloons is equal no matter the weight where air resistance is negligible.
To know more about free fall
brainly.com/question/13299152
#SPJ4
Answer:
a. E = -13.8 kN/C
b. E = +8.51 kN/C
Explanation:
We will apply Gauss' Law to the regions where the electric field is asked.
Gauss' Law states that if you draw an imaginary surface enclosing a charge distribution, then the electric field through the imaginary surface is equal to the total charge enclosed by this surface divided by electric permittivity.

a. For this case, we will draw the imaginary surface between the inner and outer shell of the sphere. The total charge enclosed by this surface will be equal to the sum of the charge Q at the center and charge of the shell within the volume from R1 and r.
Here, r = 0.5(R1+R2) = 12 cm.


b. For this case, we will draw the imaginary surface on the outside of the shell.
The total charge enclosed by this surface will be equal to the sum of the charge at the center and the total charge of the shell.
![Q_{\rm enc} = Q + \rho V = Q + (Ar)[\frac{4}{3}\pi (R_2^3 - R_1^3)]\\Q_{\rm enc} = (-35\times 10^{-9}) + [(16\times 10^{-6})(38\times 10^{-2})][\frac{4}{3}\pi((19\times 10^{-2})^3 - (5\times 10^{-2})^3)]\\Q_{\rm enc} = 1.36\times 10^{-7}~C](https://tex.z-dn.net/?f=Q_%7B%5Crm%20enc%7D%20%3D%20Q%20%2B%20%5Crho%20V%20%3D%20Q%20%2B%20%28Ar%29%5B%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%28R_2%5E3%20-%20R_1%5E3%29%5D%5C%5CQ_%7B%5Crm%20enc%7D%20%3D%20%28-35%5Ctimes%2010%5E%7B-9%7D%29%20%2B%20%5B%2816%5Ctimes%2010%5E%7B-6%7D%29%2838%5Ctimes%2010%5E%7B-2%7D%29%5D%5B%5Cfrac%7B4%7D%7B3%7D%5Cpi%28%2819%5Ctimes%2010%5E%7B-2%7D%29%5E3%20-%20%285%5Ctimes%2010%5E%7B-2%7D%29%5E3%29%5D%5C%5CQ_%7B%5Crm%20enc%7D%20%3D%201.36%5Ctimes%2010%5E%7B-7%7D~C)
