Its asking how much did they both spent, in total, in order to reach the same amount spent in part A
Answer:
is the equation of this parabola.
Step-by-step explanation:
Let us consider the equation
![y=-4x^2](https://tex.z-dn.net/?f=y%3D-4x%5E2)
![\mathrm{Domain\:of\:}\:-4x^2\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:](https://tex.z-dn.net/?f=%5Cmathrm%7BDomain%5C%3Aof%5C%3A%7D%5C%3A-4x%5E2%5C%3A%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3A-%5Cinfty%20%5C%3A%3Cx%3C%5Cinfty%20%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%5Cleft%28-%5Cinfty%20%5C%3A%2C%5C%3A%5Cinfty%20%5C%3A%5Cright%29%5Cend%7Bbmatrix%7D)
![\mathrm{Range\:of\:}-4x^2:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\le \:0\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:0]\end{bmatrix}](https://tex.z-dn.net/?f=%5Cmathrm%7BRange%5C%3Aof%5C%3A%7D-4x%5E2%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Af%5Cleft%28x%5Cright%29%5Cle%20%5C%3A0%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%2C%5C%3A0%5D%5Cend%7Bbmatrix%7D)
![\mathrm{Axis\:interception\:points\:of}\:-4x^2:\quad \mathrm{X\:Intercepts}:\:\left(0,\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:0\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BAxis%5C%3Ainterception%5C%3Apoints%5C%3Aof%7D%5C%3A-4x%5E2%3A%5Cquad%20%5Cmathrm%7BX%5C%3AIntercepts%7D%3A%5C%3A%5Cleft%280%2C%5C%3A0%5Cright%29%2C%5C%3A%5Cmathrm%7BY%5C%3AIntercepts%7D%3A%5C%3A%5Cleft%280%2C%5C%3A0%5Cright%29)
As
![\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=a\left(x-m\right)\left(x-n\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BThe%5C%3Avertex%5C%3Aof%5C%3Aan%5C%3Aup-down%5C%3Afacing%5C%3Aparabola%5C%3Aof%5C%3Athe%5C%3Aform%7D%5C%3Ay%3Da%5Cleft%28x-m%5Cright%29%5Cleft%28x-n%5Cright%29)
![\mathrm{is\:the\:average\:of\:the\:zeros}\:x_v=\frac{m+n}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7Bis%5C%3Athe%5C%3Aaverage%5C%3Aof%5C%3Athe%5C%3Azeros%7D%5C%3Ax_v%3D%5Cfrac%7Bm%2Bn%7D%7B2%7D)
![y=-4x^2](https://tex.z-dn.net/?f=y%3D-4x%5E2)
![\mathrm{The\:parabola\:params\:are:}](https://tex.z-dn.net/?f=%5Cmathrm%7BThe%5C%3Aparabola%5C%3Aparams%5C%3Aare%3A%7D)
![a=-4,\:m=0,\:n=0](https://tex.z-dn.net/?f=a%3D-4%2C%5C%3Am%3D0%2C%5C%3An%3D0)
![x_v=\frac{m+n}{2}](https://tex.z-dn.net/?f=x_v%3D%5Cfrac%7Bm%2Bn%7D%7B2%7D)
![x_v=\frac{0+0}{2}](https://tex.z-dn.net/?f=x_v%3D%5Cfrac%7B0%2B0%7D%7B2%7D)
![x_v=0](https://tex.z-dn.net/?f=x_v%3D0)
![\mathrm{Plug\:in}\:\:x_v=0\:\mathrm{to\:find\:the}\:y_v\:\mathrm{value}](https://tex.z-dn.net/?f=%5Cmathrm%7BPlug%5C%3Ain%7D%5C%3A%5C%3Ax_v%3D0%5C%3A%5Cmathrm%7Bto%5C%3Afind%5C%3Athe%7D%5C%3Ay_v%5C%3A%5Cmathrm%7Bvalue%7D)
![y_v=-4\cdot \:0^2](https://tex.z-dn.net/?f=y_v%3D-4%5Ccdot%20%5C%3A0%5E2)
![y_v=0](https://tex.z-dn.net/?f=y_v%3D0)
Therefore, the parabola vertex is
![\left(0,\:0\right)](https://tex.z-dn.net/?f=%5Cleft%280%2C%5C%3A0%5Cright%29)
![\mathrm{If}\:a](https://tex.z-dn.net/?f=%5Cmathrm%7BIf%7D%5C%3Aa%3C0%2C%5C%3A%5Cmathrm%7Bthen%5C%3Athe%5C%3Avertex%5C%3Ais%5C%3Aa%5C%3Amaximum%5C%3Avalue%7D)
![\mathrm{If}\:a>0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}](https://tex.z-dn.net/?f=%5Cmathrm%7BIf%7D%5C%3Aa%3E0%2C%5C%3A%5Cmathrm%7Bthen%5C%3Athe%5C%3Avertex%5C%3Ais%5C%3Aa%5C%3Aminimum%5C%3Avalue%7D)
![a=-4](https://tex.z-dn.net/?f=a%3D-4)
![\mathrm{Maximum}\space\left(0,\:0\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BMaximum%7D%5Cspace%5Cleft%280%2C%5C%3A0%5Cright%29)
so,
![\mathrm{Vertex\:of}\:-4x^2:\quad \mathrm{Maximum}\space\left(0,\:0\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BVertex%5C%3Aof%7D%5C%3A-4x%5E2%3A%5Cquad%20%5Cmathrm%7BMaximum%7D%5Cspace%5Cleft%280%2C%5C%3A0%5Cright%29)
Therefore,
is the equation of this parabola. The graph is also attached.
Try 4 because a die has six sides and 6-2=4
Answer:
what blocks i would help but what blocks
Step-by-step explanation:
The whole question is: The angle of depression from point R to S is angle- 3
The angle of elevation from point S to R is- 4
Angle 2 is the angle of elevation from- point R to point Q
Angle 1 is the angle of- depression from point Q to point R