what do mean what are you looking for
Answer:
the answer i got was a=−8b+24/b
Step-by-step explanation:
hoped I helped:)
Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
Answer:oop
Step-by-step explanation:
<u>Answer-</u>
<em>D. The function has one real zero and two nonreal zeros. The graph of the function intersects the x-axis at exactly one location.</em>
<u>Solution-</u>
The given polynomial is,
The zeros of the polynomials are,
Therefore, this function has only one real zero i.e 1 and two nonreal zeros i.e ±√6i . The graph of the function intersects the x-axis at exactly one location i.e at x = 1