We want to recast the equation into the standard form equation for a circle centered at (h, k) with radius r. That equation is
... (x -h)² + (y -k)² = r²
Start by completing the square for both x-terms and y-terms.
... x² - 4x + y² + 4y = k
To do that, add the squares of half the coefficients of the x- and y-terms.
... x² - 4x + (-2)² + y² + 4y + 2² = k + (-2)² + 2²
... (x -2)² + (y +2)² = k + 8 = r² . . . . . this is now equal to the square of the radius, so we have
... k + 8 = 6² = 36
Subtracting 8 gives
... k = 28 . . . . . . . matches selection D)
Answer:
in bold
Step-by-step explanation:
M is the slope and b is the y intercept
1 looks correct
2. Chose 2 points; I chose (0,2) and (2,2) Find slope: 0/-2=0 y=mx+b y=0x+b y=b b=2 y=2
3. Chose 2 points: I chose (2,9) and (0,5) Find slope: 4/2=2 y=mx+b y=2x+5
4. Chose 2 points: I chose (0,-2) and (2,-3) Find slope: 0--3/-2-2=3/-4 y=mx+b y=-3/4x-2
Okay so median is the number in the middle and mean is when you add them all up and divide by how many numbers there are
<span>20,28,35,40,132
So 35 is the median
and the mean is </span>20 + 28 + 35 + 132 + 40 = 255 / 5 = 51
the mean is a better way to represent the data because it does not just pick a number from the set of numbers it calculates the average
Answer:
(f+g)(x) = x² - x + 6
Step-by-step explanation:
We can find (f+g)(x) by adding f(x) and g(x).
f(x) = x² + 1
g(x) = 5 - x
(f+g)(x) = f(x) + g(x)
(f+g)(x) = (x² + 1) + (5 - x)
(f+g)(x) = x² + 1 + 5 - x
(f+g)(x) = x² - x + 6