Since each trial has the same probability of success,
Let, <span><span><span>Xi</span>=1</span></span> if the <span><span>i<span>th</span></span></span> trial is a success (<span>0</span> otherwise). Then, <span><span>X=<span>∑3<span>i=1</span></span><span>Xi</span></span><span>X=<span>∑<span>i=1</span>3</span><span>Xi</span></span></span>,
and <span><span>E[X]=E[<span>∑3<span>i=1</span></span><span>Xi</span>]=<span>∑3<span>i=1</span></span>E[<span>Xi</span>]=<span>∑3<span>i=1</span></span>p=3p=1.8</span><span>E[X]=E[<span>∑<span>i=1</span>3</span><span>Xi</span>]=<span>∑<span>i=1</span>3</span>E[<span>Xi</span>]=<span>∑<span>i=1</span>3</span>p=3p=1.8</span></span>
So, <span><span>p=0.6</span><span>p=0.6</span></span>, and <span><span>P{X=3}=<span>0.63</span></span><span>P{X=3}=<span>0.63</span></span></span>
I thought what I did was sound, but the textbook says the answer to (a) is <span>0.60.6</span> and (b) is <span>00</span>.
Their reasoning (for (a)) is as follows:
Step-by-step explanation:

In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2
150-4[3+9/4-1*(14-11)^2]
150-4[12/3*(3)^2]
150-4[4*3^2]
150-4[4*9]
150-4*36
150-144
6
(I think)
It is decreasing, since the y-value is going down.
Answer: -180
Step-by-step explanation: