By definition, two angles are supplementary if the sum of them is 180 degrees. In this case (see figure attached with the answer) the line AD is transversal to lines AB and DC. This is a proof of the Same-side interior angle theorem.
This theorem states that if we have two lines that are parallel and we intercept those two lines with a line that is transversal to both, same-side interior angles are formed, and also sum 180º, in other words, they are supplementary angles.
Then:
By the definition of a parallelogram, AB∥DC. AD is a transversal between these sides, so ∠A and ∠D are <em><u>same-side interior angles</u></em>. Because AB and DC are <em><u>parallel</u></em>, the same-side interior angles must be <em><u>supplementary</u></em> by the same-side interior angles theorem. Therefore, ∠A and ∠D are supplementary.
Answer:
The answer is 100
Step-by-step explanation:
Answer:
SAS
Step-by-step explanation:
There is one common side (S)
both the triangles have 90° common (A)
Opposite sides are equal which is given (S)
They both are right angled triangles
Answer:
Hope you can find your answer on oceanhero
Step-by-step explanation:
Tangent in geometry means: The tangent line <span>to a plane curve at a given point is the straight
line that "just touches" the curve at that point.
Hope I helped!
- Amber
</span>