4. describe three ways carbon dioxide was removed from the Earth's atmosphere.
Answer: Forests: Photosynthisis helps clear carbon dioxide naturally, Soils naturally store carbon, but agricultural soils are running a big deficit due to intensive use. Because agricultural land is so expansive, Bio-energy with Carbon Capture and Storage (BECCS) is another way to use photosynthesis to combat climate change. However, it is far more complicated than planting trees or managing soils — and it doesn’t always work for the climate.
5. Explain why there is now 21% Oxygen in the Earth's atomosphere compaired to little or no Oxygen in the Earth's atmosphere 4.5 billion years ago.
Answer: cientists believe that the Earth was formed about 4.5 billion years ago. Its early atmosphere was probably formed from the gases given out by volcanoes. It is believed that there was intense volcanic activity for the first billion years of the Earth's existence.The early atmosphere was probably mostly carbon dioxide, with little or no oxygen. There were smaller proportions of water vapour, ammonia and methane. As the Earth cooled down, most of the water vapour condensed and formed the oceans.
Sorry its soooo long TwT
The flow of electricity is an electric current. The path that an electric currents floes is a circuit.
I think unbalanced? not sure sorry
Answer:
24.32
Explanation:
From the question given above, the following data were obtained:
Isotope A:
Mass of A = 24
Abundance (A%) = 78.70%
Isotope B
Mass of B = 25
Abundance (B%) = 10.13%
Isotope C:
Mass of C = 26
Abundance (C%) = 11.17%
Average atomic mass of Mg =..?
The average atomic mass of Mg can be obtained as illustrated below:
Average atomic mass = [(Mass of A × A%)/100] + [(Mass of B × B%)/100] + [(Mass of C × C%)/100]
Average atomic mass = [(24 × 78.70)/100] + [(25 × 10.13)/100] + [(26 × 11.17)/100]
= 18.888 + 2.5325 + 2.9042
= 24.3247 ≈ 24.32
Therefore, the average atomic mass of magnesium (Mg) is 24.32
Answer:
im pretty sure its a push or pull thing
Explanation:
Tensional stress is the stress that tends to pull something apart. It is the stress component perpendicular to a given surface, such as a fault plane, that results from forces applied perpendicular to the surface or from remote forces transmitted through the surrounding rock.