<h3>
Answer:</h3>
4.70 × 10²⁴ atoms Ge
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
7.80 mol Ge
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
= 4.69716 × 10²⁴ atoms Ge
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
4.69716 × 10²⁴ atoms Ge ≈ 4.70 × 10²⁴ atoms Ge
Supposing a temperature of 25 degrees and supposing that all
activity coefficients are 1
pH = -log[H+]
pOH = -log[OH-]
pH + pOH = 14
Thus a pH of 2.50 would mean that the [H+], the concentration of the hydrogen
ion, would be 10^(-2.50)
pH + pOH = 14
pOH = 14 - pH = 14 - 2.5 = 11.5
MOH- levels would be coordinated with pOH
pOH = -log[OH-] ==> [OH-] = [MOH-] = 10^-pOH = 10^-11.5 = 3.2 x 10^-12
Therefore, MOH¯ = 3.2 × 10¯12 M
Answer:
A. Polar Easterlies
B. Westerlies
C. Northeast Trades
D. Southeast Trades
E. Westerlies
F. Polar Easterlies
G. Hadley cell
Explanation:
I am pretty sure this is right. Hope that helps
Answer:
Explanation:
Chemical potential energy is the chemical energy stored (or property) of a substance. One chemical potential energy of wood is combustion. Combustion involves the burning of a substance in excess oxygen (in this case open air). <u>The chemical energy stored here is transformed to thermal/heat energy after combustion due to the large amount of heat evolved/produced</u>.
NOTE:
The model above also that combustion is an exothermic reaction because it involves the release of heat into it's surrounding.
Answer:
pOH = 9.
Explanation:
The inverse relationship between the pH and pOH of any given solution can be written as:
pH = 14 - pOH
Or conversely:
pOH = 14 - pH
With the above information in mind we can <u>use the given pH to calculate the pOH</u>:
pOH = 14 - pH
pOH = 14 - 5
pOH = 9
Thus, black coffee has a pOH of 9.