Answer:
34.3 g
Explanation:
Step 1: Write the balanced equation
2 CH₃CH₂OH ⇒ CH₃CH₂OCH₂CH₃ + H₂O
Step 2: Calculate the moles corresponding to 50.0 g of CH₃CH₂OH
The molar mass of CH₃CH₂OH is 46.07 g/mol.
50.0 g × 1 mol/46.07 g = 1.09 mol
Step 3: Calculate the theoretical moles of CH₃CH₂OCH₂CH₃ produced
The molar ratio of CH₃CH₂OH to CH₃CH₂OCH₂CH₃ is 2:1. The moles of CH₃CH₂OCH₂CH₃ theoretically produced are 1/2 × 1.09 mol = 0.545 mol.
Step 4: Calculate the real moles of CH₃CH₂OCH₂CH₃ produced
The percent yield of the reaction is 85%.
0.545 mol × 85% = 0.463 mol
Step 5: Calculate the mass corresponding to 0.463 moles of CH₃CH₂OCH₂CH₃
The molar mass of CH₃CH₂OCH₂CH₃ is 74.12 g/mol.
0.463 mol × 74.12 g/mol = 34.3 g
Answer:
Radiation is being released from the reactor.
Explanation:
( A P E X )
<u>Any of five chemical substances that are not metals and that combine with hydrogen to form strong acid compounds from which simple salts can be made</u>
Answer:
<u />
<u />
<u />
Explanation:
<u>1. Chemical balanced equation (given)</u>

<u>2. Mole ratio</u>

This is, 1 mol of NaOH will reacts with 1 mol of KHP.
<u />
<u>3. Find the number of moles in 72.14 mL of the base</u>



<u>4. Find the number of grams of KHP that reacted</u>
The number of moles of KHP that reacted is equal to the number of moles of NaOH, 0.007055 mol
Convert moles to grams:
- mass = number moles × molar mass = 0.007055mol × 204.23g/mol
You have to round to 3 significant figures: 1.44 g (because the molarity is given with 3 significant figures).
<u>5. Find the percentage of KHP in the sample</u>
The percentage is how much of the substance is in 100 parts of the sample.
The formula is:
- % = (mass of substance / mass of sample) × 100
- % = (1.4408g/ 1.864g) × 100 = 77.3%
An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between at