Answer:
1.5055×10²⁴ molecules
Explanation:
From the question given above, the following data were obtained:
Number of mole CO₂ = 2.5 moles
Number of molecules CO₂ =?
The number of molecules present in 2.5 moles CO₂ can be obtained as:
From Avogadro's hypothesis,
1 mole of CO₂ = 6.022×10²³ molecules
Therefore,
2.5 mole of CO₂ = 2.5 × 6.022×10²³
2.5 mole of CO₂ = 1.5055×10²⁴ molecules
Thus, 1.5055×10²⁴ molecules are present in 2.5 moles CO₂
Answer:
5. Selenium, because it does not have a stable, half-filled p subshell and adding an electron does not decrease its stability.
Explanation:
Electron affinity is the amount of energy released when an isolated gaseous atom accepts electron to form the corresponding anion.
Selenium:-
The electronic configuration of the element is:-
![[Ar]3d^{10}4s^24p^4](https://tex.z-dn.net/?f=%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E4)
Arsenic:-
The electronic configuration of the element is:-
![[Ar]3d^{10}4s^24p^3](https://tex.z-dn.net/?f=%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E3)
The 4p orbital in case of arsenic is half filled which makes the element having more stability as compared to selenium.
Thus, selenium has higher electron affinity because adding electron does not decrease the stability as in case of arsenic.
Answer:
The final solution is 1.5 times more acidic than the initial solution
Explanation:
Option B. <span>Rb2O + Cu(C2H3O2)2 → 2RbC2H3O2 + CuO is the correct answer. HOPE IT HELPS</span>
Answer: PbCO
Explanation: its quite simple really, you need to get a periodic table and find the symbol of said elements. Lead is Pb, and carbonate is another word for carbon and oxygen, so it is C and O