1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liono4ka [1.6K]
2 years ago
9

Assume that the readings on the thermometers are normally distributed with a mean of 0 degrees0° and standard deviation of 1.00d

egrees°C. Assume 2.52.5​% of the thermometers are rejected because they have readings that are too high and another 2.52.5​% are rejected because they have readings that are too low. Draw a sketch and find the two readings that are cutoff values separating the rejected thermometers from the others.

Mathematics
1 answer:
nikitadnepr [17]2 years ago
4 0

For this question, we assume that 2.5% of the thermometers are rejected at both sides of the distribution because they have readings that are too low or too high.

Answer:

The "two readings that are cutoff values separating the rejected thermometers from the others" are -1.96 Celsius degrees (below which 2.5% of the readings are too low) and 1.96 Celsius degrees (above which 2.5% of the readings are too high).

Step-by-step explanation:

We can solve this question using the <em>standard normal distribution</em>. This is a normal distribution with mean that equals 0, \\ \mu = 0, and standard deviation that equals 1, \\ \sigma = 1.

And because of using the <em>standard normal distribution</em>, we are going to take into account the following relevant concepts:

  • <em>Standardized scores or z-scores</em>, which we can consider as the <em>distance from the mean</em> in <em>standard deviations units</em>, and the formula for them is as follows:

\\ Z = \frac{X - \mu}{\sigma} [1]

A positive value indicates that the possible raw value X is <em>above</em> \\ \mu, and a negative that the possible raw value X is <em>below</em> the mean.

  • <em>The [cumulative] standard normal table:</em> there exists a table where all these values correspond to a probability, and we can apply it for every possible normally distributed data as well as we first standardize the possible raw values for <em>X</em> using [1]. This table is called the <em>standard normal table</em>, and it is available in all Statistics books or on the Internet.

From the question, we have the following information about the readings on the thermometers, which is a normally distributed random variable:

  • Its <em>mean</em>, \\ \mu = 0 Celsius degrees.
  • Its <em>standard deviation</em>, \\ \sigma = 1.00 Celsius degrees.

It coincides with the <em>parameters</em> of the <em>standard normal distribution</em>, and we can find probabilities accordingly.

It is important to mention that the readings that are too low or too high in the normal distribution are at both extremes of it, one of them with values below the mean, \\ \mu, and the other with values above it.

In this case, we need to find:

  • First, the value <em>below</em> which is 2.5% of the lowest values of the distribution, and
  • Second, the value <em>above</em> which is 2.5% of the highest values of the distribution.

Here, we can take advantage of the <em>symmetry</em> of the normal or Gaussian distributions. In this case, the value for the 2.5% of the lowest and highest values is the <em>same in absolute value</em>, but one is negative (that one below the mean, \\ \mu) and the other is positive (that above the mean).

Solving the Question

<em>The value below (and above) which are the 2.5% of the lowest (the highest) values of the distribution</em>

Because \\ \mu = 0 and \\ \sigma = 1 (and the reasons above explained), we need to find a <em>z-score</em> with a corresponding probability of 2.5% or 0.025.

As we know that this value is below \\ \mu, it is negative (the z-score is negative). Then, we can consult the <em>standard normal table</em> and find the probability 0.025 that corresponds to this specific z-score.

For this, we first find the probability of 0.025 and then look at the first row and the first column of the table, and these values are (-0.06, -1.9), respectively. Therefore, the value for the z-score = -1.96, \\ z = -1.96.

As we said before, the distribution in the question has \\ \mu = 0 and \\ \sigma = 1, the same than the standard normal distribution (of course the units are in Celsius degrees in our case).

Thus, one of the cutoff value that separates the rejected thermometers is -1.96 Celsius degrees for that 2.5% of the thermometers rejected because they have readings that are <em>too low</em>.

And because of the <em>symmetry</em> of the normal distribution, <em>z = 1.96 is the other cutoff value</em>, that is, the other lecture is 1.96 Celsius degrees, but in this case for that 2.5% of the thermometers rejected because they have readings that are <em>too high</em>. That is, in the standard normal distribution, above z = 1.96, the probability is 0.025 or \\ P(z>1.96) = 0.025 because \\ P(z.

Remember that

\\ P(z>1.96) + P(z

\\ P(z>1.96) = 1 - P(z

\\ P(z>1.96) = 1 - 0.975

\\ P(z>1.96) = 0.025

Therefore, the "two readings that are cutoff values separating the rejected thermometers from the others" are -1.96 Celsius degrees and 1.96 Celsius degrees.

The below graph shows the areas that correspond to the values below -1.96 Celsius degrees (red) (2.5% or 0.025) and the values above 1.96 Celsius degrees (blue) (2.5% or 0.025).

You might be interested in
Solve for x. x +1/2 = 3/4
Alexeev081 [22]

x + 1/2 = 3/4

set denominators equal:

x + 2/4 = 3/4

-2/4 for both sides:

x = 1/4

there you go! hope this helps!

4 0
2 years ago
Read 2 more answers
What is the quotient of (6x2 – 19x + 15) and (2x – 3)?
Sonbull [250]

Answer:

(3x - 5)------------------->

Step-by-step explanation:

look at the work

6 0
2 years ago
Karen wants to measure the height of the streetlight outside her house. She places a mirror on the ground 52
Mariana [72]
Yeiehebei web e ddhsiwbw e did e
5 0
2 years ago
Please help with geometry thx
anastassius [24]

Answer:

Correct answer:  Fourth answer  As = 73.06 m²

Step-by-step explanation:

Given:

Radius of circle R = 16 m

Angle of circular section  θ = π/2

The area of a segment is obtained by subtracting from the area of the circular section the area of an right-angled right triangle.

We calculate the circular section area using the formula:

Acs = R²· θ / 2

We calculate the area of an right-angled right triangle using the formula:

Art = R² / 2

The area of a segment is:

As = Acs - Art = R²· θ / 2 - R² / 2 = R² / 2 ( θ - 1)

As = 16² / 2 · ( π/2 - 1) = 256 / 2 · ( 1.570796 - 1) = 128 · 0.570796 = 73.06 m²

As = 73.06 m²

God is with you!!!

7 0
3 years ago
HELP ME I DON'T UNDERSTAND IT :(
a_sh-v [17]

Answer:

D

Step-by-step explanation:

A is (-8,8) so you would divide each 8 by 4 because 8 divided by 1/4 so you will have (-2,2)

B is (-8,4) so divide the by 1/4 which would be (-2,1)

C is (4,-4) so divide that and and you get (1,-1)

5 0
3 years ago
Other questions:
  • an airport charges an additional fee for a piece of luggage that weighs more than 50 lbs write an inequality that shows the weig
    9·1 answer
  • !!!URGENT!!!
    9·1 answer
  • Three girls each earned $2.55 how much did the three girls earn altogether
    6·2 answers
  • Find the value of each variable
    11·1 answer
  • Help please I don’t know it!
    14·1 answer
  • On Tuesday at lunchtime, it was 29 degrees Celsius. By sunset, the temperature had dropped to 16 degrees Celsius. Please write a
    7·1 answer
  • Write an equation in slope-intercept form of the line perpendicular to the given line that contains D
    13·2 answers
  • Please help!!<br> Which statement best describes the end behavior of the function?
    15·1 answer
  • Find the measure of A as indicates in the picture.
    9·1 answer
  • A company determines an employee's starting salary according to the number of years of experience, as detailed in the table.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!