1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
3 years ago
9

A car is traveling at 70 km/h. It then uniformly decelerates to a complete stop in 12 s. Find its acceleration ( in m/s2 ).

Physics
2 answers:
Lera25 [3.4K]3 years ago
8 0

Answer:

- 1.62 m/s²

Explanation:

initial velocity, u = 70 km/h = 19.44 m/s

time, t = 12 s

final velocity, v  = 0

Acceleration is defined by the rate of change of velocity.

By use of first equation of motion

v = u + a t

where, a be the acceleration

0 = 19.44 + a x 12

a = - 1.62 m/s²

Thus, the acceleration is - 1.62 m/s².

Yakvenalex [24]3 years ago
5 0

Answer:

Acceleration will be -1.620m/sec^2

Explanation:

We have given initial speed of the car is 70 km/hr

We know that 1 km = 1000 m

And 1 hour = 3600 sec

So 70km/hr=70\times \frac{1000m}{3600sec}=19.444m/sec

It is given that car stops in 12 sec

So final speed of the car v = 0 m/sec

Time t = 12 sec

From first equation of motion v = u+at

So 0=19.444+a\times 12

a=\frac{-19.444}{12}=-1.620m/sec^2 ( negative sign indicates that speed of the car will constantly decrease )

You might be interested in
"Today you will use this chart to help you identify some common minerals," instructed Mr. Grant, Jimmy's teacher. Each group of
scoray [572]

The properties of minerals that might help Jimmy and his partners to identify the sample other than Hardness (scratch test) are:

1. Color

2. Crystalline Structure

3. Cleavage or Fracture

4. Transparency

5. Tenacity





4 0
3 years ago
Read 2 more answers
Index fossils are used to determine the relative ages of rock and fossils and are also used to
kolbaska11 [484]

Index fossils are used to determine the relative ages of rock and fossils and are also used to define the boundaries between geologic periods.

<u>Option: A</u>

<u>Explanation:</u>

The fossils which are recognized as fossils guides or indicator fossils are used to classify and recognize geological or faunal periods, termed as index fossils. It must be of short vertical reach, wide geographic distribution and swift patterns in evolution. It helps to assess the rock layers ' age and helps to date other fossils found close and around them. For an instance, Ammonites were abundant in the Mesozoic period between 245 to 65 mya, they have not been found after the Cretaceous era, as they became endangered during the K-T extinction (65 mya).

3 0
4 years ago
a wire with mass per unit length 75 g/m runs horizontally at right angles to a uniform horizontal 0.12 T magnetic field. what am
Sindrei [870]

Answer:

The amount of current that must flow through the wire for it to be suspended against gravity by magnetic force = 6.125 A

Explanation:

Force on a wire carrying current in an electric field is given by

F = (B)(I)(L) sin θ

For this question,

The magnetic force must match the weight of the wire.

F = mg

mg = (B)(I)(L) sin θ

(m/L)g = (B)(I) sin θ

Mass per unit length = 75 g/m = 0.075 kg/m

B = magnetic field = 0.12 T

I = ?

g = acceleration due to gravity = 9.8 m/s

θ = angle between wire's current direction and magnetic field = 90°

0.075 × 9.8 = 0.12 × I sin 90°

I = 0.075 × 9.8/0.12 = 6.125 A

3 0
3 years ago
Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b푏 (a
Wittaler [7]

Answer:

electric potential, V = -q(a²- b²)/8π∈₀r³

Explanation:

Question (in proper order)

Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings

<em>consider the attached diagram below</em>

the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below

Va = q/4π∈₀ [1/(a² + b²)¹/²]

Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }

Also

the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }

Sum of the potential at point p is

V = Va + Vb

that is

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]

the expression below can be written as the equivalent

\frac{1}{(a^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }

likewise,

\frac{1}{(b^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }

hence,

V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

1/r is common to both equation

hence, we have it out and joined to the 4π∈₀ denominator that is outside

V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

by reciprocal rule

1/a² = a⁻²

V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]

by binomial expansion of fractional powers

where (1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...

if we expand the expression we have the equivalent as shown

{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )

also,

{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )

the above equation becomes

V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]

V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )

V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )

Answer

V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }

OR

V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }

8 0
3 years ago
This problem follows up on a discussion from lecture. A wind turbine with an efficiency of 45% for converting wind energy into e
Volgvan

Answer:

4.1 m

Explanation:

10 kW = 10000 W

20mi/h = 20*1.6 km/mi = 32 km/h = 32 * 1000 (m/km) *(1/3600) hr/s = 8.89 m/s

The power yielded by the wind turbine can be calculated using the following formula

P = \frac{1}{2} \rho v^3 A C_p

where \rho = 1.2 kg/m^3 is the air density, v = 8.89 m/s is the wind speed, A is the swept area and C_p = 0.45 is the efficiency

10000 = 0.5 * 1.2 * 8.89^3 * A * 0.45

10000 = 190A

A = 10000 / 190 = 52.7 m^2

The swept area is a circle with radius r being the blade length

\pi r^2 = A = 52.7

r^2 = 52.7 / \pi = 16.79

r = \sqrt{16.79} = 4.1 m

4 0
3 years ago
Other questions:
  • Astronomers estimate that a galaxy contains a. 100 stars. c. millions or billions of stars. b. 1 star. d. 100,000 stars.
    14·1 answer
  • What is a transverse wave
    8·1 answer
  • A 4-m long wire with a mass of 70 g is under tension. A transverse wave for which the frequency is 300 Hz, the wavelength is 0.6
    7·1 answer
  • A force of 100 N is used to move a chair 2 m. How much work is done?
    5·1 answer
  • The blue laser in a blue ray DVD player is 405nm laser in vacuum. The aser strikes a quartz crystal with index of refraction 1.4
    9·1 answer
  • Consider the following hypothetical subject performing the EMG laboratory: Immediately after the subject's maximum grip strength
    10·1 answer
  • The energy stored in foods and fuels is chemical potential energy?
    13·1 answer
  • In what way is a screw similar to an inclined plane?
    10·2 answers
  • Ordinary kriging method assume that​
    15·1 answer
  • The measured value of mass M in an experiment is M = 0.743 ± 0.005kg. The error in 2M is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!