To solve this problem we will apply the concepts related to wavelength, as well as Rayleigh's Criterion or Optical resolution, the optical limit due to diffraction can be calculated empirically from the following relationship,

Here,
= Wavelength
d= Diameter of aperture
= Angular resolution or diffraction angle
Our values are given as,

The frequency of the sound is 
The speed of the sound is 
The wavelength of the sound is

Here,
v = Velocity of the wave
f = Frequency
Replacing,


The diffraction condition is then,

Replacing,

d = 0.24 m
Therefore the diameter should be 0.24m
Answer:
Work Done = 67.5 J
Explanation:
First we find the value of spring constant (k) using Hooke's Law. Hooke's is formulated as:
F = kx
where,
F = Force Applied = 450 N
k = Spring Constant = ?
x = Stretched Length = 30 cm = 0.3 m
Therefore,
450 N = k(0.3 m)
k = 450 N/0.3 m
k = 1500 N/m
Now, the formula for the work done in stretching the spring is given as:
W = (1/2)kx²
Where,
W = Work done = ?
k = 1500 N/m
x = 70 cm - 40 cm = 0.3 m
Therefore,
W = (1/2)(1500 N/m)(0.3 m)²
<u>W = 67.5 J</u>
" 478 watts " means 478 joules per second.
In 14 seconds, the total work or energy is (14 x 478) = <em>6,692 joules</em>
Answer:
kicking ball and throwing stone
Acceleration = (final velocity - initial velocity) / time
Acceleration = 20 - 0 / 3.5
= 5.714 m/s^2
Hope it helped!