Answer:
i think c
Explanation:
because cars run on mechanical energy and solar powered means its by the sun which is light energy
Answer:
An engine with an electronic fuel injection system has high fuel pressure at idle because of high manifold vacuum. (option D)
Explanation:
Electronic fuel injection (EFI) system replaced carburetors back in the mid-1980s as the preferred method of supplying air and fuel to engines. The basic difference is that a carburetor uses intake vacuum and a pressure drop in the venturi, to siphon fuel from the carburetor fuel bowl into the engine. Whereas fuel injection system uses pressure to spray fuel directly into the engine.
However, under light load or at idle, a relatively high vacuum exists in the intake manifold. This means less fuel pressure is needed to spray a given volume of fuel through the injector. Under heavy load, engine vacuum drops to near zero.
Therefore, An engine with an electronic fuel injection system has high fuel pressure at idle because of high manifold vacuum.
So you would use the equation Q=cmΔT, where c is the specific heat, m is the mass, and ΔT is change in temperature. Q, or heat added, would equal (0.187)(2.5)(350-45), which simplifies to 142.5875 btu.
Answer:
Explanation:
Given a school bus.
Let say initially the school bus is traveling with speed "v"
Let assume mass of school bus is "m"
Then, the initial kinetic energy is
K.E_initial = ½mv²
Now, if the initial velocity is tripled,
Then, the new velocity is
v_new = 3v.
Note: the mass of the school does not change it is constant
Then, new kinetic energy is
K.E_new = ½m(v_new)²
v_new = 3v
Then,
K.E_new = ½m(3v)²
K.E_new = ½m × 9v²
K.E_new = 9 × ½mv²
Since K.E = ½mv²
Then,
K.E_new = 9 × K.E
So, the new kinetic energy will be 9 times the initial kinetic energy.
So, option D is correct
D. It will be nine times greater.