(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
The answer is b.) the momentum before the collision is greater than the momentum after the collision
Answer: 2 cm
Explanation:
Given , for a converging lens
Focal length : 
Height of object : 
Object distabce from lens : 
Using lens formula:
, we get
, where v = image distance from the lens.
On solving aboive equation , we get

Formula of Magnification :
, where h' is the height of image.
Put value of u, v and h in it , we get

Hence, the height of the image is 2 cm.
Answer:
Get your answer for $1 from www.gotit-pro.com
Explanation:
Answer:
20 km/h
Explanation:
45 km ÷ 2.25 hours (15 mins is 0.25 hours)
= 20
20 km/h