Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
Answer:
n = 3.0 moles
V = 60.0 L
T = 400 K
From PV = nRT, you can find P
P = nRT/V = (3.0 mol)(0.0821 L-atm/K-mol)(400 K)/60.0L
P = 1.642 atm = 1.6 atm (to 2 significant figures)
Explanation:
They are activating which is causing them to do this
Charles law gives the relationship between volume and temperature of gas.
It states that at constant pressure volume is directly proportional to temperature
Therefore
V/ T = k
Where V - volume T - temperature in kelvin and k - constant
V1/T1 = V2/T2
Parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
Substituting the values in the equation
267 L/ 480 K = V / 750 K
V = 417 L
Final volume is 417 L
This answer is C hope this helped