The volume of the region R bounded by the x-axis is: 
<h3>What is the volume of the solid revolution on the X-axis?</h3>
The volume of a solid is the degree of space occupied by a solid object. If the axis of revolution is the planar region's border and the cross-sections are parallel to the line of revolution, we may use the polar coordinate approach to calculate the volume of the solid.
In the graph, the given straight line passes through two points (0,0) and (2,8).
Therefore, the equation of the straight line becomes:

where:
- (x₁, y₁) and (x₂, y₂) are two points on the straight line
Thus, from the graph let assign (x₁, y₁) = (0, 0) and (x₂, y₂) = (2, 8), we have:

y = 4x
Now, our region bounded by the three lines are:
Similarly, the change in polar coordinates is:
where;
- x² + y² = r² and dA = rdrdθ
Now
- rsinθ = 0 i.e. r = 0 or θ = 0
- rcosθ = 2 i.e. r = 2/cosθ
- rsinθ = 4(rcosθ) ⇒ tan θ = 4; θ = tan⁻¹ (4)
- ⇒ r = 0 to r = 2/cosθ
- θ = 0 to θ = tan⁻¹ (4)
Then:


Learn more about the determining the volume of solids bounded by region R here:
brainly.com/question/14393123
#SPJ1
Answer:
if the sum of two angles is 90° they are said to be complementary
If one angle is x
the other should be (90 - x)°
so the complementary angle of x is (90 - x)
Insurance providing salary to employees injured while working.
Ok, so 1 is a whole number. 1/5 is a fraction of 1. So you want to subtract 1/5 from 1. The number 1 is equal to 5/5. So if you subtract 1/5 from 5/5 you are left with 4/5. You do the same with the second one, just subtract 3/5 from 5/5 to get your answer.