Answer:
There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids)
Explanation:
There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids), and each is an important component of the cell and performs a wide array of functions. ... Biological macromolecules are organic, meaning that they contain carbon.
Answer:
A decrease in the total volume of the reaction vessel (T constant)
Explanation:
- Le Châtelier's principle predicts that the moles of H2 in the reaction container will increase with a decrease in the total volume of the reaction vessel.
- <em><u>According to the Le Chatelier's principle, when a chnage is a applied to a system at equilibrium, then the equilibrium will shift in a way that counteracts the effect causing it.</u></em>
- In this case, a decrease in volume means there is an increase in pressure, therefore the equilibrium will shift towards the side with the fewer number of moles of gas.
Soluble means it can be dissolved
Insoluble means it can't be dissolved
Answer:
The Equilibrium constant K is far greater than 1; K>>1
Explanation:
The equilibrium constant, K, for any given reaction at equilibrium, is defined as the ratio of the concentration of the products raised to their stoichiometric coefficients divided by the concentration of reactants raised to their stoichiometric coefficients.
It tells us more about how how bigger or smaller the concentration of products is to that of the reactants when a reaction attains equilibrium. From the given data, as the color of the reactant mixture (Br2 is reddish-brown, and H2 is colourless) fades, more of the colorless product (HBr is colorless) is being formed as the reaction approaches equilibrium. This indicates yhat the concentration of products becomes relatively higher than that of the reactants as the reaction progresses towards equilibrium, the equilibrium constant K, must be greater than 1 therefore.