Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases.
-google
its probably 40
Answer:
The number of moles of xenon are 1.69 mol.
Explanation:
Given data:
Number of moles of xenon = ?
Volume of gas = 37.8 L
Temperature = 273 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values in formula.
1 atm × 37.8 L = n × 0.0821 atm.L/ mol.K ×273 K
37.8 atm.L = n × 22.413 atm.L/ mol.
n = 37.8 atm.L / 22.413 atm.L/ mol.
n = 1.69 mol
The number of moles of xenon are 1.69.
Answer:
evaporation or water runoff that's my tips
rain or thunder storm
Answer:
The volume of helium at 25.0 °C is 60.3 cm³.
Explanation:
In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:
K = °C + 273.15
The initial and final temperatures are:
T₁ = 25.0 + 273.15 = 298.2 K
T₂ = -196.0 + 273.15 = 77.2 K
The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.

It would be weathering because of all the heat and pressure.