Answer:
CaCO3 is the limiting reactant
55 g of CO2 is made
Explanation:
First we must put down the reaction equation;
CaCO3(s) + 2HCl(aq) ---------> CaCl2(s) + H2O(l) + CO2(g)
Number of mole of CaCO3 = 125g/100gmol-1 = 1.25 moles
From the reaction equation;
1 mole of CaCO3 yields 1 mole of CO2
Hence 1.25 moles of CaCO3 yields 1.25 moles of CO2
For HCl;
number of moles of HCl = 125g/36.5 g mol-1 = 3.42 moles
From the reaction equation;
2 moles of HCl yields 1 mole of CO2
3.42 moles of HCl yields 3.42 * 1/2 = 1.71 moles of CO2
Hence CaCO3 is the limiting reactant.
Mass of CO2 produced = 1.25g * 44 gmol-1 = 55 g of CO2
Answer:
See explanation
Explanation:
The reactivity of metals has a lot to do with their position in the electrochemical series. However, it is also known that metallic character decreases across the period. This implies that as we move from left to right along the periodic table. Sodium, magnesium, aluminum and silicon continues to decrease in metallic character. As a matter of fact, silicon is a metalloid and not a pure metal.
Sodium reacts with cold water to give a vigorous reaction,magnesium and aluminium reacts with steam at red heat.
Silicon does not react with water, even as steam, under normal conditions.
Answer:

Explanation:
The amount adsorbed (solute) is the acetic acid, and the adsorbent is the activated charcoal. The mass of the adsorbent is 10 g.
So, we need to calculate the mass of the acetic acid as follows:

Where:
n: is the number of moles = C*V
M: is the molecular mass = 60.052 g/mol
C: is the final concentration of the acid = 0.5*0.2 mol/L = 0.10 mol/L
V: is the volume = 50 ml = 0.050 L

Now, the amount of solute adsorbed per gram of the adsorbent is:

Therefore, the amount of solute adsorbed per gram of the adsorbent is 0.03 g/g.
I hope it helps you!
Answer: Oxygen, Beryllium, Lithium, & Fluorine
Explanation:
theoretically it might not be the answer be
When potassium is added to water, the metal melts and floats. It moves around very quickly on the surface of the water. The hydrogen ignites instantly. The metal is also set on fire, with sparks and a lilac flame.
An example of a single replacement reaction occurs when potassium (K) reacts with water (H2O). A colorless solid compound named potassium hydroxide (KOH) forms, and hydrogen gas (H2) is set free.