I just had this question. The answer is A. a battery
Answer:
15.70mg would remain
Explanation:
Partition coefficient is used to extract or purify a solute from a solvent selectively to avoid interference from other substances. For the problem, formula is:
Kp = Concentration 9-fluorenone in ether / Concentration of solute in H₂O
After the solute, 9-fluorenone, is extracted with water, the mass that remains in ether is:
(19mg - X)
<em>Where X is the mass that now is in the aqueous phase</em>
Replacing in Kp formula:
9.5 = (19mg - X) / 5mL / (X /10mL)
0.95X = 19mg - X / 5mL
4.75X = 19 - X
5.75X = 19
X = 19 / 5.75
X = 3.30mg
That means 9-fluorenone that remain in the ether layer is:
19mg - 3.30mg =
<h3>15.70mg would remain</h3>
It has a very high melting point
120 x 1.05 = 126 gazelles next year.
If you times it by 105% then you get the answer of adding 5% on.
Pressure is 5.7 atm
<u>Explanation:</u>
P1 = Standard pressure = 1 atm
P2 = ?
V1 = Volume = 10L
V2= 2.4L
T1 = 0°C + 273 K = 273 K
T2 = 100°C + 273 K = 373 K
We have to find the pressure of the gas, by using the gas formula as,

P2 can be found by rewriting the above expression as,

Plugin the above values as,
