Yes, anything that lives. Cells have a nucleus, they are alive and can reproduce. (Not man made/abiotic)
I am going to go with,
0.10 g/mL
0.0700 g/mL
0.0447 g/mL
I don't know if this is the correct answer, but I am 80% sure that it may be.
:) :)
Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>
Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.