When waves act together, you talk about "interference".
When they reinforce each other, it is "constructive interference".
When they cancel each other, it is "destructive interference".
Answer:
To increase the yield of H₂ we would use a low temperature.
For an exothermic reaction such as this, decreasing temperature increases the value of K and the amount of products at equilibrium. Low temperature increases the value of K and the amount of products at equilibrium.
Explanation:
Let´s consider the following reaction:
CO(g) + H₂O(g) ⇌ CO₂(g) + H₂(g)
When a system at equilibrium is disturbed, the response of the system is explained by Le Chatelier's Principle: <em>If a system at equilibrium suffers a perturbation (in temperature, pressure, concentration), the system will shift its equilibrium position to counteract such perturbation</em>.
In this case, we have an exothermic reaction (ΔH° < 0). We can imagine heat as one of the products. If we decrease the temperature, the system will try to raise it favoring the forward reaction to release heat and, at the same time, increasing the yield of H₂. By having more products, the value of the equilibrium constant K increases.
The gases that get released form bubbles in the solution
One of the causes of polarity is the unequal forces of the dipole forces due to differences in electronegativity. The more electronegative molecule tend to attract electrons, hence the polarity arrows point towards it. The electronegativity of Phosphorus and Fluorine is 2.19 and 3.98, respectively. Thus, it points outward towards the fluorine atoms.